These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 5550801)

  • 21. Carbon-13 chemical shifts accompanying helix formation.
    Lyerla JR; Barber BH; Freedman MH
    Can J Biochem; 1973 Apr; 51(4):460-4. PubMed ID: 4696067
    [No Abstract]   [Full Text] [Related]  

  • 22. A convenient assay for mono-, di-, and oligophenylalanines.
    Pestka S; Scolnick EM; Heck BH
    Anal Biochem; 1969 Apr; 28(1):375-84. PubMed ID: 5781430
    [No Abstract]   [Full Text] [Related]  

  • 23. Nuclear magnetic resonance spectroscopy. Carbon-13 chemical shifts of small peptides as a function of pH.
    Christl M; Roberts JD
    J Am Chem Soc; 1972 Jun; 94(13):4565-73. PubMed ID: 5036165
    [No Abstract]   [Full Text] [Related]  

  • 24. Proton magnetic resonance studies of ribonuclease T1. Assignment of histidine-40 peak and analysis of the active site.
    Arata Y; Kimura S; Matsuo H; Narita K
    Biochem Biophys Res Commun; 1976 Nov; 73(1):133-40. PubMed ID: 11795
    [No Abstract]   [Full Text] [Related]  

  • 25. Microenvironment of histidine 12 in ribonuclease-S as detected by 13C nuclear magnetic resonance.
    Chaiken IM; Cohen JS; Sokoloski EA
    J Am Chem Soc; 1974 Jul; 96(14):4703-5. PubMed ID: 4853212
    [No Abstract]   [Full Text] [Related]  

  • 26. Carbon-13 nuclear magnetic resonance spectroscopy.
    Anet FA; Levy GC
    Science; 1973 Apr; 180(4082):141-8. PubMed ID: 4694306
    [No Abstract]   [Full Text] [Related]  

  • 27. Carbon-13 NMR studies of 13CO binding to human hemoglobin.
    Vergamini PJ; Matwiyoff NA; Wohl RC; Bradley T
    Biochem Biophys Res Commun; 1973 Nov; 55(2):453-61. PubMed ID: 4767313
    [No Abstract]   [Full Text] [Related]  

  • 28. Helix-coil transition of a synthetic polypeptide monitored by fourier transform carbon-13 nuclear magnetic resonance.
    Boccalon G; Verdini AS; Giacometti G
    J Am Chem Soc; 1972 May; 94(10):3639-41. PubMed ID: 5032967
    [No Abstract]   [Full Text] [Related]  

  • 29. Nuclear magnetic resonance study of the thermal denaturation of ribonuclease A: implications for multistate behavior at low pH.
    Westmoreland DG; Matthews CR
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):914-8. PubMed ID: 4515001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rat pancreatic ribonuclease. I. Isolation and properties.
    Beintema JJ; Campagne RN; Gruber M
    Biochim Biophys Acta; 1973 May; 310(1):148-60. PubMed ID: 4710591
    [No Abstract]   [Full Text] [Related]  

  • 31. Carbon-13 nuclear magnetic resonance titration shifts in amino acids.
    Quirt AR; Lyerla JR; Peat IR; Cohen JS; Reynolds WF; Freedman MH
    J Am Chem Soc; 1974 Jan; 96(2):570-4. PubMed ID: 4815365
    [No Abstract]   [Full Text] [Related]  

  • 32. [Estimation of pKa's of histidine residues in proteins and analysis of their environments (author's transl)].
    Matsuo H; Kangawa K; Kimura S; Narita K
    Tanpakushitsu Kakusan Koso; 1975 Apr; 20(5):479-92. PubMed ID: 241095
    [No Abstract]   [Full Text] [Related]  

  • 33. Preparation and characterization of synthetic peptidyl-aminoacyl-tRNA derivatives.
    Yankofsky SA; Yankofsky S; Katchalski E; Littauer UZ
    Biochim Biophys Acta; 1970 Jan; 199(1):56-70. PubMed ID: 5413485
    [No Abstract]   [Full Text] [Related]  

  • 34. NMR studies on angiotensin II: histidine and phenylalanine ring stacking and biological activity.
    Matsoukas JM; Moore GJ
    Biochem Biophys Res Commun; 1984 Jul; 122(1):434-8. PubMed ID: 6743343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon-13 Fourier transform nuclear magnetic resonance. 8. Role of steric and electric field effects in fatty acid spectra.
    Batchelor JG; Cushley RJ; Prestegard JH
    J Org Chem; 1974 Jun; 39(12):1698-1705. PubMed ID: 4850873
    [No Abstract]   [Full Text] [Related]  

  • 36. Determination of the tautomeric form of the imidazole ring of L-histidine in basic solution by carbon-13 magnetic resonance spectroscopy.
    Reynolds WF; Peat IR; Freedman MH; Lyerla JR
    J Am Chem Soc; 1973 Jan; 95(2):328-31. PubMed ID: 4687673
    [No Abstract]   [Full Text] [Related]  

  • 37. Nuclear magnetic resonance studies on selectively deuterated staphylococcal nuclease.
    Jardetzky O; Markley JL
    Farmaco Sci; 1970 Nov; 25(11):894-7. PubMed ID: 5497436
    [No Abstract]   [Full Text] [Related]  

  • 38. Assignment of the histidine peaks in the nuclear magnetic resonance spectrum of ribonuclease.
    Meadows DH; Jardetzky O; Epand RM; Ruterjans HH; Scheraga HA
    Proc Natl Acad Sci U S A; 1968 Jul; 60(3):766-72. PubMed ID: 5243923
    [No Abstract]   [Full Text] [Related]  

  • 39. Impact of Fourier transform techniques on high resolution NMR spectroscopy.
    Glasel JA
    Fed Proc; 1974 Aug; 33(8):1973-7. PubMed ID: 4843554
    [No Abstract]   [Full Text] [Related]  

  • 40. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. III. Mutual electrostatic interaction between histidine residues 12 and 119.
    Markley JL; Finkenstadt WR
    Biochemistry; 1975 Aug; 14(16):3562-6. PubMed ID: 240383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.