These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 5550808)

  • 1. Intramitochondrial release and binding of mitochondrial aspartate aminotransferase and malate dehydrogenase in the presence and absence of monovalent and bivalent cations.
    Rendon A; Waksman A
    Biochem Biophys Res Commun; 1971 Mar; 42(6):1214-9. PubMed ID: 5550808
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetic studies of the uptake of aspartate aminotransferase and malate dehydrogenase into mitochondria in vitro.
    Marra E; Passarella S; Casamassima E; Perlino E; Doonan S; Quagliariello E
    Biochem J; 1985 Jun; 228(2):493-503. PubMed ID: 4015628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramitochondrial intermembranal reversible translocation of aspartate aminotransferase and malate dehydrogenase through the inner mitochondrial membrane.
    Waksman A; Rendon A; Cremel G; Pellicone C; Goubault de Brugiere JF
    Biochemistry; 1977 Oct; 16(21):4703-7. PubMed ID: 911785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of cations on contracture in the superfused ventricle of Helix aspersa.
    Burton RF; Mackay JM
    Experientia; 1970; 26(2):151-2. PubMed ID: 5413775
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of metal ions in the uptake of aspartate aminotransferase and malate dehydrogenase into isolated rat liver mitochondria in vitro.
    Passarella S; Marra E; Atlante A; Doonan S; Quagliariello E
    FEBS Lett; 1985 Sep; 189(2):235-40. PubMed ID: 4043382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions among mitochondrial aspartate aminotransferase, malate dehydrogenase, and the inner mitochondrial membrane from heart, hepatoma, and liver.
    Teller JK; Fahien LA; Valdivia E
    J Biol Chem; 1990 Nov; 265(32):19486-94. PubMed ID: 2246239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release and binding of protein and enzymes from and to water-shocked vesicles obtained from rat liver mitochondria.
    Cremel G; Hubert P; Waksman A
    Physiol Chem Phys; 1975; 7(6):487-94. PubMed ID: 1223917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of aspartate aminotransferase into mitochondria in vitro causes efflux of malate dehydrogenase and vice versa.
    Passarella S; Marra E; Atlante A; Barile M; Doonan S; Quagliariello E
    Biochim Biophys Acta; 1990 Mar; 1022(3):273-82. PubMed ID: 2180483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyruvate carboxylase, malate dehydrogenase, fumarase and aspartate aminotransferase in the mitochondria and in the cytoplasm of liver of chicken embryo.
    Rinaudo MT; Giunta C
    Enzymologia; 1967 Oct; 33(3):201-10. PubMed ID: 5621946
    [No Abstract]   [Full Text] [Related]  

  • 10. Release of matrix proteins from mitochondria to cytosol during the prereplicative phase of liver regeneration.
    Greco M; Moro L; Pellecchia G; Di Pede S; Guerrieri F
    FEBS Lett; 1998 May; 427(2):179-82. PubMed ID: 9607307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramitochondrial intermembranal large amplitude protein movements. I. A possible novel aspect of membrane fluidity.
    Waksman A; Rendon A
    Biochimie; 1974; 56(6-7):907-24. PubMed ID: 4374969
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of various salts on the activity of enzymes implicated in amino-acid metabolism.
    Gilles R
    Arch Int Physiol Biochim; 1969 Aug; 77(3):441-64. PubMed ID: 4186363
    [No Abstract]   [Full Text] [Related]  

  • 13. [Effect of insulin and triiodothyronine on liver mitochondria in vivo].
    Schäfer G; Nägel L
    Hoppe Seylers Z Physiol Chem; 1968 Oct; 349(10):1365-77. PubMed ID: 4387017
    [No Abstract]   [Full Text] [Related]  

  • 14. Reversible intramitochondrial release of protein related to unsaturated fatty acids of membranes.
    Cremel G; Rebel G; Warter JM; Rendon A; Waksman A
    Arch Biochem Biophys; 1976 Mar; 173(1):255-63. PubMed ID: 1259438
    [No Abstract]   [Full Text] [Related]  

  • 15. [Effect of ammonium and metal ions on malate dehydrogenase activity in the tea plant].
    Tkemaladze GSh; Morchiladze ZN; Soseliia MF; Kretovich VL
    Biokhimiia; 1972; 37(6):1199-203. PubMed ID: 4643740
    [No Abstract]   [Full Text] [Related]  

  • 16. Selective modification of mitochondrial malate dehydrogenase activity by changes in ionic strength.
    Kun E; Eanes RZ; Volfin P
    Nature; 1967 Jun; 214(5095):1328-30. PubMed ID: 6056846
    [No Abstract]   [Full Text] [Related]  

  • 17. Glycolysis in human blood in the presence of sodium salicylate and the importance of the incubation medium.
    Davies DT; Hughes A; Tonks RS
    Biochem Pharmacol; 1970 Apr; 19(4):1277-85. PubMed ID: 5513919
    [No Abstract]   [Full Text] [Related]  

  • 18. Simultaneous purification by affinity chromatography of rat liver mitochondrial aspartate aminotransferase and malate dehydrogenase and electrophoretic properties.
    Crémel G; Filliol D; Waksman A
    Anal Biochem; 1985 Nov; 150(2):332-6. PubMed ID: 4091261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-specific development of malate-aspartate shuttle in the liver and kidney of mice.
    Sharma R; Dey S; Verma R
    Biochem Int; 1992 Sep; 27(6):1059-66. PubMed ID: 1445374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The release of aspartate transaminase from mitochondria by dilute ionic solutions.
    Boyde TR; Hui CF
    Biochem Biophys Res Commun; 1972 Jan; 46(1):231-7. PubMed ID: 5006913
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.