These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 5551648)
1. Influence of molecular structures of substrates and analogues on Taka-amylase A catalyzed hydrolyses. I. Effect of chain length of linear substrates. Nitta Y; Mizushima M; Hiromi K; Ono S J Biochem; 1971 Mar; 69(3):567-76. PubMed ID: 5551648 [No Abstract] [Full Text] [Related]
2. Influence of molecular structure of substrates and analogues on Taka-amylase A catalyzed hydrolyses. II. Inhibition by analogues for the hydrolysis of synthetic substrates. Nitta Y; Hiromi K; Ono S J Biochem; 1971 Mar; 69(3):577-88. PubMed ID: 5551649 [No Abstract] [Full Text] [Related]
3. Influence of molecular structures of substrates and analogues on Taka-amylase A catalyzed hydrolyses. 3. Inhibition by 2-deoxy-D-glucose and methyl -D-glucoside: change in inhibition type with substrate chain length. Nitta Y; Hiromi K; Ono S J Biochem; 1971 Dec; 70(6):973-9. PubMed ID: 5144358 [No Abstract] [Full Text] [Related]
4. The mechanism of salivary amylase hydrolysis: role of residues at subsite S2'. Mishra PJ; Ragunath C; Ramasubbu N Biochem Biophys Res Commun; 2002 Mar; 292(2):468-73. PubMed ID: 11906186 [TBL] [Abstract][Full Text] [Related]
5. Studies on the substrate specificity of Taka-amylase A. IV. The mode of action of Taka-amylase A on modified phenyl alpha-maltoside. Arita H; Isemura M; Ikenaka T; Matsushima Y J Biochem; 1970 Jul; 68(1):91-6. PubMed ID: 5452769 [No Abstract] [Full Text] [Related]
6. Substituent effect on the hydrolyses of phenyl -maltosides catalyzed by saccharifying -amylase from Bacillus subtilis. Suetsugu N; Hiromi K; Ono S J Biochem; 1971 Oct; 70(4):595-601. PubMed ID: 5002615 [No Abstract] [Full Text] [Related]
7. A study of the mechanism of action of Taka-amylase A1 on linear oligosaccharides by product analysis and computer simulation. Suganuma T; Matsuno R; Ohnishi M; Hiromi K J Biochem; 1978 Aug; 84(2):293-316. PubMed ID: 308947 [TBL] [Abstract][Full Text] [Related]
8. Configurational specificity: unappreciated key to understanding enzymic reversions and de novo glycosidic bond synthesis. I. Reversal of hydrolysis by alpha-, beta- and glucoamylases with donors of correct anomeric form. Hehre EJ; Okada G; Genghof DS Arch Biochem Biophys; 1969 Dec; 135(1):74-89. PubMed ID: 5391475 [No Abstract] [Full Text] [Related]
9. Hydrolysis of maltose by Taka-amylase A. Nitta Y; Hiromi K; Ono S J Biochem; 1968 May; 63(5):632-6. PubMed ID: 5723093 [No Abstract] [Full Text] [Related]
10. Kinetic studies on Taka-amylase A-catalyzed reaction by continuous spectrophotometric method. Hydrolysis of p-nitrophenyl alpha-maltoside and its inhibition by phenyl alpha-maltoside and anomers of some mono- and disaccharides. Suetsugu N; Hiromi K; Takagi M; Ono S J Biochem; 1968 Nov; 64(5):619-24. PubMed ID: 5709264 [No Abstract] [Full Text] [Related]
11. Studies on the substrate specificity of Taka-amylase A. VII. Synthesis of some analogues of phenyl alpha-maltoside and enzymatic investigation. Arita H; Ikenaka T; Matsushima Y J Biochem; 1971 Feb; 69(2):401-7. PubMed ID: 5550976 [No Abstract] [Full Text] [Related]
12. Quantitative analysis of the action of Taka-amylase A on maltotriose. Suganuma T; Ohnishi M; Matsuno R; Hiromi K J Biochem; 1976 Sep; 80(3):645-8. PubMed ID: 977557 [TBL] [Abstract][Full Text] [Related]
13. The role of tyrosine residue of bacterial liquefying alpha-amylase in the enzymatic hydrolysis of linear substrates as studied by chemical modification with acetic anhydride. Onishi M; Suganuma T; Hiromi K J Biochem; 1974 Jul; 76(1):7-13. PubMed ID: 4215804 [No Abstract] [Full Text] [Related]
14. Inhibition of human digestive enzymes by hydrogenated malto-oligosaccharides. Würsch P; Del Vedovo S Int J Vitam Nutr Res; 1981; 51(2):161-5. PubMed ID: 6169675 [TBL] [Abstract][Full Text] [Related]
15. Kinetic studies on the hydrolyses of alpha-, beta-, and gamma-cyclodextrins by Taka-amylase A. Suetsugu N; Koyama S; Takeo K; Kuge T J Biochem; 1974 Jul; 76(1):57-63. PubMed ID: 4436272 [No Abstract] [Full Text] [Related]
16. Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase. D'Amico S; Sohier JS; Feller G J Mol Biol; 2006 May; 358(5):1296-304. PubMed ID: 16580683 [TBL] [Abstract][Full Text] [Related]
17. Kinetic study on chemical modification of taka-amylase A. I. Location and role of tryptophan residues. Kita Y; Fukazawa M; Nitta Y; Watanabe T J Biochem; 1982 Sep; 92(3):653-9. PubMed ID: 6183254 [TBL] [Abstract][Full Text] [Related]
18. [Kinetics of hydrolysis of different substrates by rabbit liver gamma-amylase]. Belen'kiĭ DM Dokl Akad Nauk SSSR; 1972 Jul; 205(1):230-2. PubMed ID: 4673396 [No Abstract] [Full Text] [Related]
19. Studies on the substrate specificity of Taka-amylase A. X. Change in the mode of substrate binding by p-phenylazobenzoylation of the enzyme. Omichi K; Ikenaka T; Matsushima Y J Biochem; 1972 Sep; 72(3):665-71. PubMed ID: 4634975 [No Abstract] [Full Text] [Related]
20. Rate equation for amylase-catalyzed hydrolysis, transglycosylation and condensation of linear oligosaccharides and amylose. Matsuno R; Suganuma T; Fujimori H; Nakanishi K; Hiromi K; Kamikubo T J Biochem; 1978 Feb; 83(2):385-94. PubMed ID: 632229 [No Abstract] [Full Text] [Related] [Next] [New Search]