These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 5551660)

  • 1. Studies on seeds. II. Origin and degradation of lipid vesicles in pea and bean cotyledons.
    Mollenhauer HH; Totten C
    J Cell Biol; 1971 Feb; 48(2):395-405. PubMed ID: 5551660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on seeds. 3. Isolation and structure of lipid-containing vesicles.
    Mollenhauer HH; Totten C
    J Cell Biol; 1971 Mar; 48(3):533-41. PubMed ID: 5545332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochemical and developmental changes in microbodies (glyoxysomes) and related organelles of castor bean endosperm.
    Vigil EL
    J Cell Biol; 1970 Sep; 46(3):435-54. PubMed ID: 4121486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on seeds. IV. Lipid composition of bean cotyledon vesicles.
    Allen CF; Good P; Mollenhauer HH; Totten C
    J Cell Biol; 1971 Mar; 48(3):542-6. PubMed ID: 4324165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in lipid status and glass properties in cotyledons of developing sunflower seeds.
    Lehner A; Corbineau F; Bailly C
    Plant Cell Physiol; 2006 Jul; 47(7):818-28. PubMed ID: 16707505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of puromycin on the structure of rat intestinal epithelial cells during fat absorption.
    Friedman HI; Cardell RR
    J Cell Biol; 1972 Jan; 52(1):15-40. PubMed ID: 4331298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies.
    Wang J; Li Y; Lo SW; Hillmer S; Sun SS; Robinson DG; Jiang L
    Plant Physiol; 2007 Apr; 143(4):1628-39. PubMed ID: 17322331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of lipid reserves in cotyledons of primed and aged sunflower seeds.
    Walters C; Landré P; Hill L; Corbineau F; Bailly C
    Planta; 2005 Oct; 222(3):397-407. PubMed ID: 16136327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seed germination studies. 3. Properties of a cell-free amino acid incorporating system from pea cotyledons; possible origin of cotyledonary alpha-amylase.
    Swain RR; Dekker EE
    Plant Physiol; 1969 Mar; 44(3):319-25. PubMed ID: 5775202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LR white resin and improved on-grid immunogold detection of vicilin, a pea seed storage protein.
    Craig S; Miller C
    Cell Biol Int Rep; 1984 Oct; 8(10):879-86. PubMed ID: 6509563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum.
    Maltman DJ; Gadd SM; Simon WJ; Slabas AR
    Proteomics; 2007 May; 7(9):1513-28. PubMed ID: 17407185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein changes between dormant and dormancy-broken seeds of Prunus campanulata Maxim.
    Lee CS; Chien CT; Lin CH; Chiu YY; Yang YS
    Proteomics; 2006 Jul; 6(14):4147-54. PubMed ID: 16800032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and Temporal Mapping of Key Lipid Species in
    Woodfield HK; Sturtevant D; Borisjuk L; Munz E; Guschina IA; Chapman K; Harwood JL
    Plant Physiol; 2017 Apr; 173(4):1998-2009. PubMed ID: 28188274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural changes in cells of pea embryo radicles during germination.
    Yoo BY
    J Cell Biol; 1970 Apr; 45(1):158-71. PubMed ID: 5458994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.
    Lima NB; Trindade FG; da Cunha M; Oliveira AE; Topping J; Lindsey K; Fernandes KV
    Plant Cell Environ; 2015 Apr; 38(4):718-28. PubMed ID: 25142352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic morphology and the origins of the membrane maturation model of Golgi apparatus function.
    James Morré D; Mollenhauer HH
    Int Rev Cytol; 2007; 262():191-218. PubMed ID: 17631189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell wall polysaccharides are mislocalized to the Vacuole in echidna mutants.
    McFarlane HE; Watanabe Y; Gendre D; Carruthers K; Levesque-Tremblay G; Haughn GW; Bhalerao RP; Samuels L
    Plant Cell Physiol; 2013 Nov; 54(11):1867-80. PubMed ID: 24058145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of seed lipid-body-associated proteins.
    Purkrtova Z; Jolivet P; Miquel M; Chardot T
    C R Biol; 2008 Oct; 331(10):746-54. PubMed ID: 18926488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tridimensional structure of the Golgi apparatus in type A ganglion cells of the rat.
    Rambourg A; Clermont Y
    Am J Anat; 1986 Aug; 176(4):393-409. PubMed ID: 2428234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ITRAQ-Based Proteomic Analysis of the Metabolic Mechanisms Behind Lipid Accumulation and Degradation during Peanut Seed Development and Postgermination.
    Wang Y; Ma X; Zhang X; He X; Li H; Cui D; Yin D
    J Proteome Res; 2016 Dec; 15(12):4277-4289. PubMed ID: 27669742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.