These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 5552250)

  • 1. The use of nuclear magnetic resonance to describe the binding of atrophine analogues to acetylcholinesterase.
    Kato G; Yung J
    Mol Pharmacol; 1971 Jan; 7(1):33-9. PubMed ID: 5552250
    [No Abstract]   [Full Text] [Related]  

  • 2. Acetylcholinesterase. II. A study by nuclear magnetic resonance of the acceleration of acetylcholinesterase by atropine and inhibition by eserine.
    Kato G
    Mol Pharmacol; 1972 Sep; 8(5):582-8. PubMed ID: 5083615
    [No Abstract]   [Full Text] [Related]  

  • 3. Acetylcholinesterase. I. A study by nuclear magnetic resonance of the binding of inhibitors to the enzyme.
    Kato G
    Mol Pharmacol; 1972 Sep; 8(5):575-81. PubMed ID: 5083614
    [No Abstract]   [Full Text] [Related]  

  • 4. Drugs-biomolecule interactions: binding study of substrate and inhibitors to acetylcholinesterase using NMR.
    Kato G
    J Pharm Sci; 1975 Mar; 64(3):488-93. PubMed ID: 1151640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR studies on drug-receptor interactions. The binding of atropine and eserine to acetylcholinesterase.
    Kato G
    Int Z Klin Pharmakol Ther Toxikol; 1971 Aug; 5(1):12-9. PubMed ID: 4328180
    [No Abstract]   [Full Text] [Related]  

  • 6. Internal flexibility of inhibitors bound to Electrophorus electricus acetylcholinesterase: proton nuclear magnetic resonance spectroscopy.
    Marshall AG; Carruthers JM
    Mol Pharmacol; 1981 Jul; 20(1):89-97. PubMed ID: 7290088
    [No Abstract]   [Full Text] [Related]  

  • 7. NMR studies of the interaction of eserine and atropine with acetylchol inesterase.
    Kato G; Yung J; Ihnat M
    Biochem Biophys Res Commun; 1970 Jul; 40(1):15-21. PubMed ID: 4318583
    [No Abstract]   [Full Text] [Related]  

  • 8. Choroid plexus uptake of atropine and methylatropine.
    Winbladh B
    Acta Pharmacol Toxicol (Copenh); 1970; 28(1):91. PubMed ID: 5314457
    [No Abstract]   [Full Text] [Related]  

  • 9. [Studies on the metabolism of tropane alkaloids. VI. Chemical analysis of atropine metabolism in mice].
    Werner G; Schmidt HL
    Hoppe Seylers Z Physiol Chem; 1968 May; 349(5):677-91. PubMed ID: 5697799
    [No Abstract]   [Full Text] [Related]  

  • 10. Acetylcholine recognition by a deep, biomimetic pocket.
    Hof F; Trembleau L; Ullrich EC; Rebek J
    Angew Chem Int Ed Engl; 2003 Jul; 42(27):3150-3. PubMed ID: 12866104
    [No Abstract]   [Full Text] [Related]  

  • 11. pKa measurements from nuclear magnetic resonance for the B1 and B2 immunoglobulin G-binding domains of protein G: comparison with calculated values for nuclear magnetic resonance and X-ray structures.
    Khare D; Alexander P; Antosiewicz J; Bryan P; Gilson M; Orban J
    Biochemistry; 1997 Mar; 36(12):3580-9. PubMed ID: 9132009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atropine: a sensitive gas chromatography-mass spectrometry assay and prepharmacokinetic studies.
    Eckert M; Hinderling PH
    Agents Actions; 1981 Nov; 11(5):520-31. PubMed ID: 7337075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy.
    Johnson PE; Joshi MD; Tomme P; Kilburn DG; McIntosh LP
    Biochemistry; 1996 Nov; 35(45):14381-94. PubMed ID: 8916925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Left ventricular contractility after hypothermic preservation: predictive value of phosphorus 31-nuclear magnetic resonance spectroscopy.
    Carteaux JP; Mertes PM; Pinelli G; Escanye JM; Walker P; Brunotte F; Jaboin Y; Robert J; Villemot JP
    J Heart Lung Transplant; 1994; 13(4):661-8. PubMed ID: 7947883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and binding properties of cyclopentane analogues of myo-inositol 1,4,5-tris(phosphate).
    Moris MA; Caron AZ; Guillemette G; Schlewer G
    Bioorg Med Chem; 2004 Aug; 12(15):3995-4001. PubMed ID: 15246076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saturation transfer difference nuclear magnetic resonance spectroscopy as a method for screening proteins for anesthetic binding.
    Streiff JH; Juranic NO; Macura SI; Warner DO; Jones KA; Perkins WJ
    Mol Pharmacol; 2004 Oct; 66(4):929-35. PubMed ID: 15385643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on serum cholinesterase kinetics by nuclear magnetic resonance spectroscopy.
    Kato G
    Mol Pharmacol; 1968 Nov; 4(6):640-4. PubMed ID: 5725578
    [No Abstract]   [Full Text] [Related]  

  • 18. Temporal effects of newly developed oximes (K027, K048) on malathion-induced acetylcholinesterase inhibition and lipid peroxidation in mouse prefrontal cortex.
    da Silva AP; Farina M; Franco JL; Dafre AL; Kassa J; Kuca K
    Neurotoxicology; 2008 Jan; 29(1):184-9. PubMed ID: 18035420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The gastrointestinal absorption of anticholinergic drugs: comparison between individuals.
    Beermann B; Hellström K; Rosén A
    Acta Pharmacol Toxicol (Copenh); 1971; 29 Suppl 3():98-102. PubMed ID: 5316415
    [No Abstract]   [Full Text] [Related]  

  • 20. The kinetics of atropine and apoatropine in aqueous solutions.
    Lund W; Waaler T
    Acta Chem Scand; 1968; 22(10):3085-97. PubMed ID: 5719172
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.