These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 5553100)
1. The effect of valinomycin on the electrical properties of solutions of red cell lipids in n-decane. Andreoli TE; Tosteson DC J Gen Physiol; 1971 May; 57(5):526-38. PubMed ID: 5553100 [TBL] [Abstract][Full Text] [Related]
2. The effect of valinomycin on the ionic permeability of thin lipid membranes. Andreoli TE; Tieffenberg M; Tosteson DC J Gen Physiol; 1967 Dec; 50(11):2527-45. PubMed ID: 5584619 [TBL] [Abstract][Full Text] [Related]
3. Effect of peptide PV on the ionic permeability of lipid bilayer membranes. Ting-Beall HP; Tosteson MT; Gisin BF; Tosteson DC J Gen Physiol; 1974 Apr; 63(4):492-508. PubMed ID: 4820091 [TBL] [Abstract][Full Text] [Related]
4. Ionic peremability of thin lipid membranes. Effects of n-alkyl alcohols, polyvalent cations, and a secondary amine. Gutknecht J; Tosteson DC J Gen Physiol; 1970 Mar; 55(3):359-74. PubMed ID: 5535355 [TBL] [Abstract][Full Text] [Related]
5. The permeability of thin lipid membranes to bromide and bromine. Gutknecht J; Bruner LJ; Tosteson DC J Gen Physiol; 1972 Apr; 59(4):486-592. PubMed ID: 5063846 [TBL] [Abstract][Full Text] [Related]
6. The formation and properties of thin lipid membranes from HK and LK sheep red cell lipids. Andreoli TE; Bangham JA; Tosteson DC J Gen Physiol; 1967 Jul; 50(6):1729-49. PubMed ID: 6034765 [TBL] [Abstract][Full Text] [Related]
7. Some effects of trinitrocresolate and valinomycin on Na and K transport across thin lipid bilayer membranes: a steady-state analysis with simultaneous tracer and electrical measurements. Ginsburg H; Tosteson MT; Tosteson DC J Membr Biol; 1978 Sep; 42(2):153-68. PubMed ID: 702517 [TBL] [Abstract][Full Text] [Related]
8. [Part of the concentrations boundary layers in creations the electrical properties of cell containing two polymeric membranes and binary electrolyte solutions]. Werner H; Slezak A Polim Med; 2007; 37(4):3-19. PubMed ID: 18572875 [TBL] [Abstract][Full Text] [Related]
9. Molecular aspects of polyene- and sterol-dependent pore formation in thin lipid membranes. Dennis VW; Stead NW; Andreoli TE J Gen Physiol; 1970 Mar; 55(3):375-400. PubMed ID: 4938534 [TBL] [Abstract][Full Text] [Related]
10. The interaction of polyene antibiotics with thin lipid membranes. Andreoli TE; Monahan M J Gen Physiol; 1968 Aug; 52(2):300-25. PubMed ID: 5672005 [TBL] [Abstract][Full Text] [Related]
11. Permeability and electrical properties of planar lipid membranes from thylakoid lipids. Fuks B; Homblé F Biophys J; 1994 May; 66(5):1404-14. PubMed ID: 8061192 [TBL] [Abstract][Full Text] [Related]
12. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Montal M; Mueller P Proc Natl Acad Sci U S A; 1972 Dec; 69(12):3561-6. PubMed ID: 4509315 [TBL] [Abstract][Full Text] [Related]
13. Experimentally observed effects of carriers on the electrical properties of bilayer membranes--equilibrium domain. With a contribution on the molecular basis of ion selectivity. Szabo G; Eisenman G; Laprade R; Ciani SM; Krasne S Membranes; 1973; 2():179-328. PubMed ID: 4585227 [No Abstract] [Full Text] [Related]
14. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and gramicidin. Krasne S; Eisenman G; Szabo G Science; 1971 Oct; 174(4007):412-5. PubMed ID: 5111995 [TBL] [Abstract][Full Text] [Related]
15. [Use of valinomycin as a probe for the study of membrane properties. I. Non-monotonous changes in the properties of bovine lipid bilayer membranes with increase in the ionic strength of the bath solutions]. Shkrob AM; Mel'nik EI; Terekhov OP; Ovchinnikov IuA Biofizika; 1973; 18(4):649-54. PubMed ID: 4725834 [No Abstract] [Full Text] [Related]
16. Impedance analysis of valinomycin activity in nano-BLMs. Kepplinger C; Höfer I; Steinem C Chem Phys Lipids; 2009 Aug; 160(2):109-13. PubMed ID: 19446541 [TBL] [Abstract][Full Text] [Related]
17. Chloride transport in porous lipid bilayer membranes. Andreoli TE; Watkins ML J Gen Physiol; 1973 Jun; 61(6):809-30. PubMed ID: 4708408 [TBL] [Abstract][Full Text] [Related]
18. Valinomycin acts as a channel in ultrathin lipid membranes. Gliozzi A; Robello M; Fittabile L; Relini A; Gambacorta A Biochim Biophys Acta; 1996 Aug; 1283(1):1-3. PubMed ID: 8765086 [TBL] [Abstract][Full Text] [Related]
19. A laser-T-jump study of the adsorption of dipolar molecules to planar lipid membranes. I. 2,4-dichlorophenoxyacetic acid. Awiszus R; Stark G Eur Biophys J; 1988; 15(5):299-310. PubMed ID: 3366096 [TBL] [Abstract][Full Text] [Related]
20. The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Stark G; Ketterer B; Benz R; Läuger P Biophys J; 1971 Dec; 11(12):981-94. PubMed ID: 4332419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]