These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Intestinal sugar transport: ionic activation and chemical specificity. Bihler I Biochim Biophys Acta; 1969 Jun; 183(1):169-81. PubMed ID: 5792864 [No Abstract] [Full Text] [Related]
6. Human erythrocyte sugar transport. Kinetic evidence for an asymmetric carrier. Bloch R J Biol Chem; 1974 Jun; 249(11):3543-50. PubMed ID: 4831229 [No Abstract] [Full Text] [Related]
7. Absorption of carbohydrates by intestine of Ascaris lumbricoides in vitro. Sanhueza P; Palma R; Oberhauser E; Orrego H; Parsons DS; Salinas A Nature; 1968 Sep; 219(5158):1062-3. PubMed ID: 5673367 [No Abstract] [Full Text] [Related]
8. Impairment by hexoses of the utilization of maltose by Saccharomyces cerevisiae. Heredia CF Biochim Biophys Acta; 1998 Sep; 1425(1):151-8. PubMed ID: 9813297 [TBL] [Abstract][Full Text] [Related]
9. Inactivation of glucose carriers in human erythrocyte membranes by 1-fluoro-2,4-dinitrobenzene. Jung CY J Biol Chem; 1974 Jun; 249(11):3568-73. PubMed ID: 4831230 [No Abstract] [Full Text] [Related]
10. Effects of phloretin and synthetic estrogens on beta-galactoside transport in Escherichia coli. Batt ER; Schachter D Biochim Biophys Acta; 1971 Mar; 233(1):189-200. PubMed ID: 4931395 [No Abstract] [Full Text] [Related]
11. Transport of hexoses across the liver-cell membrane. Baur H; Heldt HW Eur J Biochem; 1977 Apr; 74(2):397-403. PubMed ID: 856580 [TBL] [Abstract][Full Text] [Related]
12. Human erythrocyte sugar transport. Identification of the essential residues of the sugar carrier by specific modification. Bloch R J Biol Chem; 1974 Mar; 249(6):1814-22. PubMed ID: 4817966 [No Abstract] [Full Text] [Related]
13. The influence of nickelous ions on carbohydrate transport in yeast cells. van Steveninck J Biochim Biophys Acta; 1966 Sep; 126(1):154-62. PubMed ID: 5970535 [No Abstract] [Full Text] [Related]
14. Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport. Simoni RD; Levinthal M; Kundig FD; Kundig W; Anderson B; Hartman PE; Roseman S Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1963-70. PubMed ID: 4866983 [No Abstract] [Full Text] [Related]
15. The inhibitory effect of phlorhizin and phloretin on hexose transport in the liver. Ibu JO; Short AH Scand J Gastroenterol Suppl; 1986; 124():75-81. PubMed ID: 3508647 [TBL] [Abstract][Full Text] [Related]
16. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors. Basketter DA; Widdas WF J Physiol; 1978 May; 278():389-401. PubMed ID: 671319 [TBL] [Abstract][Full Text] [Related]
17. 3-phenylpropylaminoguanidine.HCl (43-522): a specific carbohydrate inhibitor in rats. Ho RS; Kelly LA Proc Soc Exp Biol Med; 1980 Feb; 163(2):200-5. PubMed ID: 7360749 [No Abstract] [Full Text] [Related]
18. Glucose transport carrier activities in extensively washed human red cell ghosts. Jung CY; Carlson LM; Whaley DA Biochim Biophys Acta; 1971 Aug; 241(2):613-27. PubMed ID: 5159799 [No Abstract] [Full Text] [Related]
19. Anomalous transport kinetics and the glucose carrier hypothesis. Regen DM; Tarpley HL Biochim Biophys Acta; 1974 Mar; 339(2):218-33. PubMed ID: 4827852 [No Abstract] [Full Text] [Related]
20. [The action of inhibitors of sugar transport phlorizin, phloretin and cytochalasin B in model systems]. Vasianin SI Tsitologiia; 1989 Jan; 31(1):57-65. PubMed ID: 2718259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]