These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 5553321)

  • 1. Inhibition of sugar transport in erythrocytes by fluorodinitrobenzene.
    Krupka RM
    Biochemistry; 1971 Mar; 10(7):1148-53. PubMed ID: 5553321
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for a carrier conformational change associated with sugar transport in erythrocytes.
    Krupka RM
    Biochemistry; 1971 Mar; 10(7):1143-8. PubMed ID: 5553320
    [No Abstract]   [Full Text] [Related]  

  • 3. Combined effects of maltose and deoxyglucose on fluorodinitrobenzene inactivation of sugar transport in erythrocytes.
    Krupka RM
    Biochim Biophys Acta; 1972 Sep; 282(1):326-36. PubMed ID: 5070082
    [No Abstract]   [Full Text] [Related]  

  • 4. Inactivation of glucose carriers in human erythrocyte membranes by 1-fluoro-2,4-dinitrobenzene.
    Jung CY
    J Biol Chem; 1974 Jun; 249(11):3568-73. PubMed ID: 4831230
    [No Abstract]   [Full Text] [Related]  

  • 5. The inactivation by fluorodinitrobenzene of glucose transport across the human erythrocyte membrane. The effect of glucose inside or outside the cell.
    Edwards PA
    Biochim Biophys Acta; 1973 May; 307(2):415-8. PubMed ID: 4711194
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of psychotropic drugs on the erythrocyte permeability to glucose and ethylidene glucose.
    Baker GF; Rogers HJ
    Biochem Pharmacol; 1972 Jul; 21(13):1871-8. PubMed ID: 4646186
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of glucose transport in the human erythrocyte by cytochalasin B.
    Bloch R
    Biochemistry; 1973 Nov; 12(23):4799-801. PubMed ID: 4773858
    [No Abstract]   [Full Text] [Related]  

  • 8. Chemical modification of proteins involved in the permeability of the erythrocyte membrane to ions.
    Rothstein A; Takeshita M; Knauf PA
    Biomembranes; 1972; 3():393-413. PubMed ID: 4580645
    [No Abstract]   [Full Text] [Related]  

  • 9. Human erythrocyte sugar transport. Identification of the essential residues of the sugar carrier by specific modification.
    Bloch R
    J Biol Chem; 1974 Mar; 249(6):1814-22. PubMed ID: 4817966
    [No Abstract]   [Full Text] [Related]  

  • 10. Interaction of alcohols with the transport system of glucose in human erythrocytes.
    Lacko L; Wittke B; Geck P
    J Cell Physiol; 1974 Apr; 83(2):267-73. PubMed ID: 4822530
    [No Abstract]   [Full Text] [Related]  

  • 11. Chemical modifiers of passive ion permeability of the erythrocyte membrane.
    Passow H; Schnell KF
    Experientia; 1969 May; 25(5):460-8. PubMed ID: 5796145
    [No Abstract]   [Full Text] [Related]  

  • 12. Aspects of competitive inhibition.
    Widdas WF
    Biomembranes; 1972; 3():101-5. PubMed ID: 4666507
    [No Abstract]   [Full Text] [Related]  

  • 13. Reaction of the glucose carrier in erythrocytes with halodinitrobenzenes.
    Krupka RM; Devés R
    J Biol Chem; 1980 Mar; 255(5):2051-5. PubMed ID: 7354076
    [No Abstract]   [Full Text] [Related]  

  • 14. Interaction of sugar acetals with the human erythrocyte glucose transport system.
    Novak RA; LeFevre PG
    J Membr Biol; 1974 Jul; 17(3):383-90. PubMed ID: 4847765
    [No Abstract]   [Full Text] [Related]  

  • 15. Glucose transport carrier activities in extensively washed human red cell ghosts.
    Jung CY; Carlson LM; Whaley DA
    Biochim Biophys Acta; 1971 Aug; 241(2):613-27. PubMed ID: 5159799
    [No Abstract]   [Full Text] [Related]  

  • 16. [Inhibition by digitaline of active ion transport at the level of the erythrocyte membrane].
    Fournier E; Temstet M
    Eur J Toxicol; 1971; 4(3):208-19. PubMed ID: 4255702
    [No Abstract]   [Full Text] [Related]  

  • 17. Facilitated diffusion in pigeon erythrocytes.
    Hunter FR
    Am J Physiol; 1970 Jun; 218(6):1765-72. PubMed ID: 5446311
    [No Abstract]   [Full Text] [Related]  

  • 18. Isolation of a glucose-binding component from human erythrocyte membranes.
    Bobinski H; Stein WD
    Nature; 1966 Sep; 211(5056):1366-8. PubMed ID: 5969828
    [No Abstract]   [Full Text] [Related]  

  • 19. Preferential uptake of D-glucose by isolated human erythrocyte membranes.
    Kahlenberg A; Urman B; Dolansky D
    Biochemistry; 1971 Aug; 10(16):3154-62. PubMed ID: 5126931
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of temperature on sulfate movements across chemically or enzymatically modified membranes of human red blood cells.
    Schwoch G; Rudloff V; Wood-Guth I; Passow H
    Biochim Biophys Acta; 1974 Feb; 339(1):126-38. PubMed ID: 4851700
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.