These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 5555079)

  • 1. Detoxication enzymes in the guts of caterpillars: an evolutionary answer to plant defenses?
    Krieger RI; Feeny PP; Wilkinson CF
    Science; 1971 May; 172(3983):579-81. PubMed ID: 5555079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper.
    Barbehenn RV
    J Chem Ecol; 2002 Jul; 28(7):1329-47. PubMed ID: 12199499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microsomes: mixed-function oxidase in the mid-gut of the corn earworm.
    Chandran SR; Khan MA
    J Econ Entomol; 1972 Oct; 65(5):1510-2. PubMed ID: 5085824
    [No Abstract]   [Full Text] [Related]  

  • 4. How herbivores coopt plant defenses: natural selection, specialization, and sequestration.
    Petschenka G; Agrawal AA
    Curr Opin Insect Sci; 2016 Apr; 14():17-24. PubMed ID: 27436642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic microsomal mixed-function oxidase activity of several marine species from coastal Maine.
    Pohl RJ; Bend JR; Guarino AM; Fouts JR
    Drug Metab Dispos; 1974; 2(6):545-555. PubMed ID: 4156316
    [No Abstract]   [Full Text] [Related]  

  • 6. A rapid method for estimating microsomal oxidase activity in the housefly with (14C)parathion as substrate.
    Rhee KS; Plapp FW
    J Agric Food Chem; 1974; 22(2):261-4. PubMed ID: 4209355
    [No Abstract]   [Full Text] [Related]  

  • 7. In vitro microsomal epoxidase activity and susceptibility to carbaryl and carbaryl-piperonyl butoxide combinations in house crickets of different age and sex.
    Benke GM; Wilkinson CF
    J Econ Entomol; 1971 Oct; 64(5):1032-4. PubMed ID: 5122319
    [No Abstract]   [Full Text] [Related]  

  • 8. Gut microbes may facilitate insect herbivory of chemically defended plants.
    Hammer TJ; Bowers MD
    Oecologia; 2015 Sep; 179(1):1-14. PubMed ID: 25936531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive plant toxins and their role in defense against herbivores and pathogens.
    Wittstock U; Gershenzon J
    Curr Opin Plant Biol; 2002 Aug; 5(4):300-7. PubMed ID: 12179963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does plant trait diversity reduce the ability of herbivores to defend against predators? The plant variability-gut acclimation hypothesis.
    Wetzel WC; Thaler JS
    Curr Opin Insect Sci; 2016 Apr; 14():25-31. PubMed ID: 27436643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. House fly microsomal oxidation of some foreign compounds.
    Khan MA; Chang JL; Sutherland DJ; Rosen JD; Kamal A
    J Econ Entomol; 1970 Dec; 63(6):1807-13. PubMed ID: 5508363
    [No Abstract]   [Full Text] [Related]  

  • 12. Induction of detoxication enzymes in insects.
    Terriere LC
    Annu Rev Entomol; 1984; 29():71-88. PubMed ID: 6362551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined effect of biopesticides on the digestive enzymatic profiles of Cnaphalocrocis medinalis (GuenĂ©e) (the rice leaffolder) (Insecta: Lepidoptera: Pyralidae).
    Nathan SS; Chung PG; Murugan K
    Ecotoxicol Environ Saf; 2006 Jul; 64(3):382-9. PubMed ID: 15946740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive selection of digestive Cys proteases in herbivorous Coleoptera.
    Vorster J; Rasoolizadeh A; Goulet MC; Cloutier C; Sainsbury F; Michaud D
    Insect Biochem Mol Biol; 2015 Oct; 65():10-9. PubMed ID: 26264818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidants in grasshoppers: higher levels defend the midgut tissues of a polyphagous species than a graminivorous species.
    Barbehenn RV
    J Chem Ecol; 2003 Mar; 29(3):683-702. PubMed ID: 12757328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monoterpenes as inhibitors of digestive enzymes and counter-adaptations in a specialist avian herbivore.
    Kohl KD; Pitman E; Robb BC; Connelly JW; Dearing MD; Forbey JS
    J Comp Physiol B; 2015 May; 185(4):425-34. PubMed ID: 25652583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering Plant Defenses: Herbivore-Associated Molecular Patterns and Effector Arsenal of Chewing Herbivores.
    Basu S; Varsani S; Louis J
    Mol Plant Microbe Interact; 2018 Jan; 31(1):13-21. PubMed ID: 28840787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Midgut glycosidases activities in monophagous larvae of Apollo butterfly, Parnassius apollo ssp. frankenbergeri.
    Nakonieczny M; Michalczyk K; Kedziorski A
    C R Biol; 2006 Oct; 329(10):765-74. PubMed ID: 17027637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tritrophic Interactions: Microbe-Mediated Plant Effects on Insect Herbivores.
    Shikano I; Rosa C; Tan CW; Felton GW
    Annu Rev Phytopathol; 2017 Aug; 55():313-331. PubMed ID: 28590879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning in Insect Pollinators and Herbivores.
    Jones PL; Agrawal AA
    Annu Rev Entomol; 2017 Jan; 62():53-71. PubMed ID: 27813668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.