These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 5556683)

  • 1. Turnover and thermostability of proteins and nucleic acids in Bacillus stearothermophilus.
    Coultate TP; Sunadarm TK
    J Gen Microbiol; 1971 Mar; 65(3):v. PubMed ID: 5556683
    [No Abstract]   [Full Text] [Related]  

  • 2. Amino acid uptake, protein and nucleic acid synthesis and turnover in Bacillus stearothermophilus.
    Bubela B; Holdsworth ES
    Biochim Biophys Acta; 1966 Aug; 123(2):364-75. PubMed ID: 5970344
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA.
    Agris PF; Koh H; Söll D
    Arch Biochem Biophys; 1973 Jan; 154(1):277-82. PubMed ID: 4689778
    [No Abstract]   [Full Text] [Related]  

  • 4. Protein thermostability. Correlations between calculated macroscopic parameters and growth temperature for closely related thermophilic and mesophilic bacilli.
    Merkler DJ; Farrington GK; Wedler FC
    Int J Pept Protein Res; 1981 Nov; 18(5):430-42. PubMed ID: 7341526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of protein and ribonucleic acid in Bacillus stearothermophilus.
    Coultate TP; Sundaram TK; Cazzulo JJ
    J Gen Microbiol; 1975 Dec; 91(2):383-90. PubMed ID: 1206375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation.
    Ugwuanyi JO
    Bioresour Technol; 2008 May; 99(8):3279-90. PubMed ID: 17664065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Protein biosynthesis in subcellular structures of the thermophilic microorganism Bacillus coagulans].
    Zaĭtseva GN; Kaliuzhnaia AP; Golovacheva RS
    Dokl Akad Nauk SSSR; 1970; 195(5):1226-9. PubMed ID: 5511760
    [No Abstract]   [Full Text] [Related]  

  • 8. Protein synthesis and ribosomal distribution at different growth stages in Bacillus stearothermophilus.
    Gonzalez NS; Goldemberg SH; Algranati ID
    Biochim Biophys Acta; 1968 Oct; 166(3):760-2. PubMed ID: 5722705
    [No Abstract]   [Full Text] [Related]  

  • 9. A mathematical model for the continuous cultivation of thermophilic microorganisms.
    Matsché NF; Andrews JF
    Biotechnol Bioeng Symp; 1973; 0(4-1):77-90. PubMed ID: 4606121
    [No Abstract]   [Full Text] [Related]  

  • 10. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein.
    Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of a 20 kDa protein associated with a carbocycle-forming enzyme involved in aminoglycoside biosynthesis in primary and secondary metabolism.
    Tamegai H; Sawada H; Nango E; Aoki R; Hirakawa H; Iino T; Eguchi T
    Biosci Biotechnol Biochem; 2010; 74(6):1215-9. PubMed ID: 20530911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unified hypothesis on the causes of the cardinal temperatures of microorganisms; the temperature minimum of Bacillus stearothermophilus.
    Babel W; Rosenthal HA; Rapoport S
    Acta Biol Med Ger; 1972; 28(4):565-76. PubMed ID: 5074610
    [No Abstract]   [Full Text] [Related]  

  • 13. Glycine-15 in the bend between two alpha-helices can explain the thermostability of DNA binding protein HU from Bacillus stearothermophilus.
    Kawamura S; Kakuta Y; Tanaka I; Hikichi K; Kuhara S; Yamasaki N; Kimura M
    Biochemistry; 1996 Jan; 35(4):1195-200. PubMed ID: 8573574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective elimination of nucleic acids from bacterial protein samples for optimized blue native polyacrylamide gel electrophoresis.
    Liang J; Niu Q; Xu X; Luo Y; Zhou X; Deng Z; Wang Z
    Electrophoresis; 2009 Jul; 30(14):2454-9. PubMed ID: 19598158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of bacterial messenger RNA in mesophiles and thermophiles.
    Stenesh J; Madison JB
    Biochim Biophys Acta; 1979 Nov; 565(1):154-60. PubMed ID: 508760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High temperature lactic acid production by Bacillus coagulans immobilized in LentiKats.
    Rosenberg M; Rebros M; Kristofíková L; Malátová K
    Biotechnol Lett; 2005 Dec; 27(23-24):1943-7. PubMed ID: 16328994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature on the cellular integrity of Bacillus psychrophilus.
    Alsobrook D; Larkin JM; Sega MW
    Can J Microbiol; 1972 Nov; 18(11):1671-8. PubMed ID: 4563852
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of temperature on the glucose utilization by Bacillus stearothermophilus.
    Recknitz B; Janota-Bassalik L
    Acta Microbiol Pol; 1967; 16(1):13-8. PubMed ID: 4166066
    [No Abstract]   [Full Text] [Related]  

  • 19. Sporulation and the production of antibiotics, exoenzymes, and exotonins.
    Schaeffer P
    Bacteriol Rev; 1969 Mar; 33(1):48-71. PubMed ID: 4889149
    [No Abstract]   [Full Text] [Related]  

  • 20. Specific interaction of the RNA-binding domain of the bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT.
    Langbein I; Bachem S; Stülke J
    J Mol Biol; 1999 Nov; 293(4):795-805. PubMed ID: 10543968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.