These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 5557059)

  • 61. [Manganese-oxidizing bacteria. I. Isolation and identification of various manganese-oxidizing bacteria].
    Schweisfurth R
    Z Allg Mikrobiol; 1973; 13(4):341-7. PubMed ID: 4771702
    [No Abstract]   [Full Text] [Related]  

  • 62. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs.
    Raghoebarsing AA; Smolders AJ; Schmid MC; Rijpstra WI; Wolters-Arts M; Derksen J; Jetten MS; Schouten S; Sinninghe Damsté JS; Lamers LP; Roelofs JG; Op den Camp HJ; Strous M
    Nature; 2005 Aug; 436(7054):1153-6. PubMed ID: 16121180
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Comparative characterization of cultured methane-oxidizing bacteria by serological and molecular methods].
    Slobodova NV; Kolganova TV; Bulygina ES; Kuznetsov BB; Turova TP; Kravchenko IK
    Mikrobiologiia; 2006; 75(3):397-403. PubMed ID: 16871808
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. 3. Experiments with 14C-labeled substrates.
    Cappenberg TE; Prins RA
    Antonie Van Leeuwenhoek; 1974; 40(3):457-69. PubMed ID: 4546838
    [No Abstract]   [Full Text] [Related]  

  • 65. Detection and classification of atmospheric methane oxidizing bacteria in soil.
    Bull ID; Parekh NR; Hall GH; Ineson P; Evershed RP
    Nature; 2000 May; 405(6783):175-8. PubMed ID: 10821271
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Study on the structure and function of a stable methane-oxidizing mixed microbial consortium].
    Luo MF; Wu H; Wang L; Xing XH
    Wei Sheng Wu Xue Bao; 2007 Feb; 47(1):103-9. PubMed ID: 17436634
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition.
    Vekeman B; Dumolin C; De Vos P; Heylen K
    Antonie Van Leeuwenhoek; 2017 Feb; 110(2):281-289. PubMed ID: 27752798
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biodegradation of petroleum in seawater at low temperatures.
    Atlas RM; Bartha R
    Can J Microbiol; 1972 Dec; 18(12):1851-5. PubMed ID: 4649739
    [No Abstract]   [Full Text] [Related]  

  • 69. Denitrification with methane as external carbon source.
    Modin O; Fukushi K; Yamamoto K
    Water Res; 2007 Jun; 41(12):2726-38. PubMed ID: 17433401
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Bacterial quantity and microbial reactivity in Tugur bay of the Okhotsk Sea].
    Dziuban AN
    Mikrobiologiia; 2003; 72(3):419-26. PubMed ID: 12901020
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Geochemical characteristics of the carbonate constructions formed during microbial oxidation of methane under anaerobic conditions].
    Lein AIu; Ivanov MV; Pimenov NV; Gulin MB
    Mikrobiologiia; 2002; 71(1):89-102. PubMed ID: 11910813
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea.
    Ettwig KF; Shima S; van de Pas-Schoonen KT; Kahnt J; Medema MH; Op den Camp HJ; Jetten MS; Strous M
    Environ Microbiol; 2008 Nov; 10(11):3164-73. PubMed ID: 18721142
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Aerobic methanotrophic communities in the bottom sediments of Lake Baikal].
    Gaĭnutdinova EA; Eshinimaev BTs; Tsyrenzhapova IS; Dagurova OP; Suzina NE; Khmelenina VN; Namsaraev BB; Trotsenko IuA
    Mikrobiologiia; 2005; 74(4):562-71. PubMed ID: 16211862
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [The effect of organic substances on the assimilation of methane by obligate methylotrophs].
    Malashenko IuR; Romanovskaia VA; Bogachenko VN; Kryshtab TP
    Mikrobiologiia; 1974 Mar; 43(2):343-8. PubMed ID: 4857241
    [No Abstract]   [Full Text] [Related]  

  • 76. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea.
    Wilms R; Sass H; Köpke B; Cypionka H; Engelen B
    FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quantitative aspects of growth of the methane oxidizing bacterium Methylococcus capsulatus on methane in shake flask and continuous chemostat culture.
    Harwood JH; Pirt SJ
    J Appl Bacteriol; 1972 Dec; 35(4):597-607. PubMed ID: 4651256
    [No Abstract]   [Full Text] [Related]  

  • 78. [Methane utilization by microorganisms in contact with coal].
    Nazarenko AV; Nesterov AI; Volkov AI; Suslenkov BD
    Prikl Biokhim Mikrobiol; 1974; 10(5):741-4. PubMed ID: 4463364
    [No Abstract]   [Full Text] [Related]  

  • 79. Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis.
    Bryant MP; McBride BC; Wolfe RS
    J Bacteriol; 1968 Mar; 95(3):1118-23. PubMed ID: 5651323
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.