These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 5557968)

  • 1. The role of microtubules and microfilaments in neurulation in Xenopus.
    Karfunkel P
    Dev Biol; 1971 May; 25(1):30-56. PubMed ID: 5557968
    [No Abstract]   [Full Text] [Related]  

  • 2. Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice.
    Galea GL; Maniou E; Edwards TJ; Marshall AR; Ampartzidis I; Greene NDE; Copp AJ
    Nat Commun; 2021 Feb; 12(1):1159. PubMed ID: 33608529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rgma-Induced Neo1 Proteolysis Promotes Neural Tube Morphogenesis.
    Brown S; Jayachandran P; Negesse M; Olmo V; Vital E; Brewster R
    J Neurosci; 2019 Sep; 39(38):7465-7484. PubMed ID: 31399534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elasticity-based boosting of neuroepithelial nucleokinesis via indirect energy transfer from mother to daughter.
    Shinoda T; Nagasaka A; Inoue Y; Higuchi R; Minami Y; Kato K; Suzuki M; Kondo T; Kawaue T; Saito K; Ueno N; Fukazawa Y; Nagayama M; Miura T; Adachi T; Miyata T
    PLoS Biol; 2018 Apr; 16(4):e2004426. PubMed ID: 29677184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Claudins are essential for cell shape changes and convergent extension movements during neural tube closure.
    Baumholtz AI; Simard A; Nikolopoulou E; Oosenbrug M; Collins MM; Piontek A; Krause G; Piontek J; Greene NDE; Ryan AK
    Dev Biol; 2017 Aug; 428(1):25-38. PubMed ID: 28545845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The blastomere periphery ofXenopus laevis, with special reference to intercellular relationships.
    Sanders EJ; Zalik SE
    Wilhelm Roux Arch Entwickl Mech Org; 1972 Sep; 171(3):181-194. PubMed ID: 28304690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels.
    Nagasaka A; Shinoda T; Kawaue T; Suzuki M; Nagayama K; Matsumoto T; Ueno N; Kawaguchi A; Miyata T
    Front Cell Dev Biol; 2016; 4():139. PubMed ID: 27933293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics of neurulation: From classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube.
    Vijayraghavan DS; Davidson LA
    Birth Defects Res; 2017 Jan; 109(2):153-168. PubMed ID: 27620928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubules, polarity and vertebrate neural tube morphogenesis.
    Cearns MD; Escuin S; Alexandre P; Greene ND; Copp AJ
    J Anat; 2016 Jul; 229(1):63-74. PubMed ID: 27025884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin.
    Zhou J; Kim HY; Wang JH; Davidson LA
    Development; 2010 Aug; 137(16):2785-94. PubMed ID: 20630946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neogenin and RGMa control neural tube closure and neuroepithelial morphology by regulating cell polarity.
    Kee N; Wilson N; De Vries M; Bradford D; Key B; Cooper HM
    J Neurosci; 2008 Nov; 28(48):12643-53. PubMed ID: 19036958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restricted expression of the actin-regulatory protein, tropomyosin, defines distinct boundaries, evaginating neuroepithelium, and choroid plexus forerunners during early CNS development.
    Nicholson-Flynn K; Hitchcock-DeGregori SE; Levitt P
    J Neurosci; 1996 Nov; 16(21):6853-63. PubMed ID: 8824324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural changes of the human embryonal cortex during explantation.
    Smirnov EB; Puchkov VF; Otellin VA
    Neurosci Behav Physiol; 1993; 23(2):115-7. PubMed ID: 8487935
    [No Abstract]   [Full Text] [Related]  

  • 14. The formation of the embryonic mesoderm in the early post-implantation mouse embryo.
    Poelmann RE
    Anat Embryol (Berl); 1981; 162(1):29-40. PubMed ID: 7283171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of contractility of circumferential actin bundles and its morphogenetic significance in pigmented epithelium in vitro and in vivo.
    Owaribe K; Kodama R; Eguchi G
    J Cell Biol; 1981 Aug; 90(2):507-14. PubMed ID: 7197277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of retraction of the trailing edge during fibroblast movement.
    Chen WT
    J Cell Biol; 1981 Jul; 90(1):187-200. PubMed ID: 7195906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Microtubules in normal human keratinocytes (author's transl)].
    Rupec M
    Arch Dermatol Forsch; 1974 Apr; 249(3):235-46. PubMed ID: 4840865
    [No Abstract]   [Full Text] [Related]  

  • 18. The early development of the median thyroid gland of the mouse. A light-, electron-microscopic and histochemical study.
    Romert P; Gauguin J
    Z Anat Entwicklungsgesch; 1973 Apr; 139(3):319-36. PubMed ID: 4707940
    [No Abstract]   [Full Text] [Related]  

  • 19. Filaments and microtubules in the cytoplasm of the granulosa cells from the human follicle.
    Schuchner EB; Stockert JC
    Protoplasma; 1973; 76(2):133-7. PubMed ID: 4689410
    [No Abstract]   [Full Text] [Related]  

  • 20. Cell elongation in the cultured embryonic chick lens epithelium with and without protein synthesis. Involvement of microtubules.
    Piatigorsky J; Webster Hde F; Wollberg M
    J Cell Biol; 1972 Oct; 55(1):82-92. PubMed ID: 4653421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.