These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 5558263)

  • 21. Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.).
    Pan Y; Koopmans GF; Bonten LT; Song J; Luo Y; Temminghoff EJ; Comans RN
    Environ Geochem Health; 2016 Dec; 38(6):1355-1372. PubMed ID: 26832131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Transformation of the organophosphorus pesticides, antio and chlorophos, in the environment].
    Bolotnyĭ AV; Pis'mennaia MV; Akoronko SL
    Gig Sanit; 1978 May; (5):28-31. PubMed ID: 95990
    [No Abstract]   [Full Text] [Related]  

  • 23. [Selenium cycling and transformation in paddy field and selenium nutrition of rice: a review].
    Zhang JH; Zhu LF; Yu SM; Jin QY
    Ying Yong Sheng Tai Xue Bao; 2012 Oct; 23(10):2900-6. PubMed ID: 23359956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of diazinon, chlorpyrifos, isofenphos, and pendimethalin in grass and compost.
    Lemmon CR; Pylypiw HM
    Bull Environ Contam Toxicol; 1992 Mar; 48(3):409-15. PubMed ID: 1378329
    [No Abstract]   [Full Text] [Related]  

  • 25. Influence of temperature on the biological activity of insecticides in soil.
    Harris CR
    J Econ Entomol; 1971 Oct; 64(5):1044-9. PubMed ID: 4107776
    [No Abstract]   [Full Text] [Related]  

  • 26. Monitoring of selected pesticides residue levels in water samples of paddy fields and removal of cypermethrin and chlorpyrifos residues from water using rice bran.
    Bhattacharjee S; Fakhruddin AN; Chowdhury MA; Rahman MA; Alam MK
    Bull Environ Contam Toxicol; 2012 Aug; 89(2):348-53. PubMed ID: 22627618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decay profile and metabolic pathways of quinalphos in water, soil and plants.
    Gupta B; Rani M; Kumar R; Dureja P
    Chemosphere; 2011 Oct; 85(5):710-6. PubMed ID: 21708396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors.
    Kumarathilaka P; Seneweera S; Meharg A; Bundschuh J
    Sci Total Environ; 2018 Nov; 642():485-496. PubMed ID: 29908507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil.
    Chao X; Qian X; Han-Hua Z; Shuai W; Qi-Hong Z; Dao-You H; Yang-Zhu Z
    Ecotoxicol Environ Saf; 2018 Nov; 164():554-561. PubMed ID: 30149354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Bioremediation of mineral oil and polycyclic aromatic hydrocarbons (PAHs) in soils with two plant species].
    Song Y; Xu H; Ren L
    Ying Yong Sheng Tai Xue Bao; 2001 Feb; 12(1):108-12. PubMed ID: 11813411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability.
    Li H; Liu Y; Chen Y; Wang S; Wang M; Xie T; Wang G
    Sci Rep; 2016 Aug; 6():31616. PubMed ID: 27530495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Risk assessment and vertical distribution of thallium in paddy soils and uptake in rice plants irrigated with acid mine drainage.
    Huang X; Li N; Wu Q; Long J; Luo D; Zhang P; Yao Y; Huang X; Li D; Lu Y; Liang J
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24912-24921. PubMed ID: 27662859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Richness and density of aquatic benthic macroinvertebrates after exposure to fungicides and insecticides in rice paddy fields.
    Wandscheer ACD; Marchesan E; Santos S; Zanella R; Silva MF; Londero GP; Donato G
    An Acad Bras Cienc; 2017; 89(1):355-369. PubMed ID: 28273247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [TCM-3 and phosalone absorption from soil and their migration into plants].
    Kovaleva ES; Talanov GA
    Gig Sanit; 1977 Dec; (12):87-8. PubMed ID: 590777
    [No Abstract]   [Full Text] [Related]  

  • 35. Toxic metabolites of diazinon in sheep.
    Janes NF; Machin AF; Quick MP; Rogers H; Mundy DE; Cross AJ
    J Agric Food Chem; 1973; 21(1):121-4. PubMed ID: 4682326
    [No Abstract]   [Full Text] [Related]  

  • 36. Effects of an additive (hydroxyapatite-biochar-zeolite) on the chemical speciation of Cd and As in paddy soils and their accumulation and translocation in rice plants.
    Gu JF; Zhou H; Yang WT; Peng PQ; Zhang P; Zeng M; Liao BH
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8608-8619. PubMed ID: 29318486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolism of monocrotophos and quinalphos by algae isolated from soil.
    Megharaj M; Venkateswarlu K; Rao AS
    Bull Environ Contam Toxicol; 1987 Aug; 39(2):251-6. PubMed ID: 3663978
    [No Abstract]   [Full Text] [Related]  

  • 38. [Residue build-up of the systemic insecticide, dimethoate, in the milk of lactating cows after pour-on application].
    Fechner G; Berger H; Hoernicke E; Ackermann H
    Arch Exp Veterinarmed; 1970; 24(5):1137-40. PubMed ID: 5534931
    [No Abstract]   [Full Text] [Related]  

  • 39. Uptake of 32P-parathion and 32P-imidan by Euglena gracilis.
    Kortus J; Macŭch P; Mayer J; Durcek K; Krcméry V
    J Hyg Epidemiol Microbiol Immunol; 1971; 15(1):101-3. PubMed ID: 5102896
    [No Abstract]   [Full Text] [Related]  

  • 40. Metabolism of O-ethyl S,S-dipropyl phosphorodithioate (Mocap) in bean and corn plants.
    Menzer RE; Iqbal ZM; Boyd GR
    J Agric Food Chem; 1971; 19(2):351-6. PubMed ID: 5546165
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.