BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 5560364)

  • 1. Some effects of iron deficiency on Rhodopseudomonas spheroides strain Y.
    Reiss-Husson F; De Klerk H; Jolchine G; Jauneau E; Kamen MD
    Biochim Biophys Acta; 1971 Apr; 234(1):73-82. PubMed ID: 5560364
    [No Abstract]   [Full Text] [Related]  

  • 2. Purification and properties of a photosynthetic reaction center isolated from various chromatophore fractions of Rhodopseudomonas spheroides Y.
    Reiss-Husson F; Jolchine G
    Biochim Biophys Acta; 1972 Feb; 256(2):440-51. PubMed ID: 4536948
    [No Abstract]   [Full Text] [Related]  

  • 3. Dependency on environmental redox potential of photophosphorylation in Rhodopseudomonas spheroides.
    Culbert-Runquist JA; Hadsell RM; Loach PA
    Biochemistry; 1973 Aug; 12(18):3508-14. PubMed ID: 4542403
    [No Abstract]   [Full Text] [Related]  

  • 4. In situ characterisation of photosynthetic electron transport in Rhodopseudomonas capsulata.
    Evans EH; Crofts AR
    Biochim Biophys Acta; 1974 Jul; 357(1):89-102. PubMed ID: 4370093
    [No Abstract]   [Full Text] [Related]  

  • 5. Photosynthetic membrane development in Rhodopseudomonas spheroides: incorporation of bacteriochlorophyll and development of energy transfer and photochemical activity.
    Cellarius RA; Peters GA
    Biochim Biophys Acta; 1969 Oct; 189(2):234-44. PubMed ID: 5350449
    [No Abstract]   [Full Text] [Related]  

  • 6. [Chromatophores of photosynthetic bacteria].
    Ishimoto M; Yamashita J
    Tanpakushitsu Kakusan Koso; 1971 Aug; 16(9):822-30. PubMed ID: 4936494
    [No Abstract]   [Full Text] [Related]  

  • 7. The separation of chromatophores from the cell envelope in Rhodopseudomonas spheroides.
    Niederman RA; Gibson KD
    Prep Biochem; 1971; 1(2):141-50. PubMed ID: 5317366
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanism of catalase induction in Rhodopseudomonas spheroides: role of porphyrin excretion.
    Shanmugam KT; Berger LR
    Arch Mikrobiol; 1969; 69(3):197-205. PubMed ID: 5385699
    [No Abstract]   [Full Text] [Related]  

  • 9. The sizes of the photosynthetic energy-transducing units in purple bacteria determined by single flash yield, titration by antibiotics and carotenoid absorption band shift.
    Nishimura M
    Biochim Biophys Acta; 1970 Jan; 197(1):69-77. PubMed ID: 5412035
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77 degrees K in chromatophores of Chromatium D and Rhodopseudomonas gelatinosa.
    Dutton PL
    Biochim Biophys Acta; 1971 Jan; 226(1):63-80. PubMed ID: 5549985
    [No Abstract]   [Full Text] [Related]  

  • 11. Cytochrome photooxidations in Chromatiumchromatophores. Each P870 oxidizes two cytochrome C422 hemes.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):397-403. PubMed ID: 5363977
    [No Abstract]   [Full Text] [Related]  

  • 12. Evidence for the formation of membranous chromatophore precursor fractions in Rhodopseudomonas spheroides.
    Shaw MA; Richards WR
    Biochem Biophys Res Commun; 1971 Nov; 45(4):863-70. PubMed ID: 5117558
    [No Abstract]   [Full Text] [Related]  

  • 13. Reaction center preparations of Rhodopseudomonas spheroides: energy transfer and structure.
    Slooten L
    Biochim Biophys Acta; 1972 Feb; 256(2):452-66. PubMed ID: 4536949
    [No Abstract]   [Full Text] [Related]  

  • 14. Proton uptake and quenching of bacteriochlorophyll fluorescence in Rhodopseudomonas spheroides.
    Sherman LA; Cohen WS
    Biochim Biophys Acta; 1972; 283(1):54-66. PubMed ID: 4539373
    [No Abstract]   [Full Text] [Related]  

  • 15. The relation between H+-uptake and electron flow in chromatophores from photosynthetic bacteria.
    Crofts AR; Evans EH; Cogdell RJ
    Ann N Y Acad Sci; 1974 Feb; 227():227-43. PubMed ID: 4597309
    [No Abstract]   [Full Text] [Related]  

  • 16. Some structural and photochemical properties of Rhodopseudomonas species NHTC 133 subchromatophore particles obtained by treatment with Triton X-100.
    Garcia A; Vernon LP; Ke B; Mollenhauer H
    Biochemistry; 1968 Jan; 7(1):326-32. PubMed ID: 5758550
    [No Abstract]   [Full Text] [Related]  

  • 17. Isolation and fractionation of the photosynthetic membranous organelles from Rhodopseudomonas spheroides.
    Fraker PJ; Kaplan S
    J Bacteriol; 1971 Oct; 108(1):465-73. PubMed ID: 4107812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active center fractions from Rhodopseudomonas spheroides strain Y. (de Klerk).
    Jolchine G; Reiss-Husson F; Kamen MD
    Proc Natl Acad Sci U S A; 1969 Oct; 64(2):650-3. PubMed ID: 5261040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Light-dependent pyridine nucleotide reduction with molecarhydrogen by subcellular photopigment particles from Rhodopseudomonas capsulata].
    Klemme JH; Schlegel HG
    Z Naturforsch B; 1967 Aug; 22(8):899-900. PubMed ID: 4384771
    [No Abstract]   [Full Text] [Related]  

  • 20. Reconstitution of photosynthetic electron transport and photophosphorylation in cytochrome-c2-deficient membrane preparation of Rhodopseudomonas capsulata.
    Hochman A; Carmeli C
    Arch Biochem Biophys; 1977 Feb; 179(1):349-59. PubMed ID: 190950
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.