These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 5562683)

  • 21. Fast transport of materials in mammalian nerve fibers.
    Ochs S
    Science; 1972 Apr; 176(4032):252-60. PubMed ID: 5019778
    [No Abstract]   [Full Text] [Related]  

  • 22. The effect of halothane on rapid axonal transport in the rabbit vagus.
    Kennedy RD; Fink BR; Byers MR
    Anesthesiology; 1972 May; 36(5):433-43. PubMed ID: 4112232
    [No Abstract]   [Full Text] [Related]  

  • 23. Labelled proteins in rabbit vagus nerve between the fast and slow phases of axonal transport.
    McLean WG; Frizell M; Sjöstrand J
    J Neurochem; 1976 Jan; 26(1):77-82. PubMed ID: 56424
    [No Abstract]   [Full Text] [Related]  

  • 24. Maintenance of synaptic membranes by the fast axonal flow.
    Krygier-Brévart V; Weiss DG; Mehl E; Schubert P; Kreutzberg GW
    Brain Res; 1974 Aug; 77(1):97-110. PubMed ID: 4137051
    [No Abstract]   [Full Text] [Related]  

  • 25. The transport of proteins in Mauthner axon in fish as studied by autoradiography and interference microscopy.
    Jakoubek B; Semiginovský B; Scott D; Bass A
    J Neurobiol; 1969; 1(3):263-74. PubMed ID: 4110874
    [No Abstract]   [Full Text] [Related]  

  • 26. Slow axonal transport or proteins; blockade by interruption of contact between cell body and axon.
    Frizell M; McLean WG; Sjöstrand J
    Brain Res; 1975 Mar; 86(1):67-73. PubMed ID: 46768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localization of dopamine D2 receptor mRNA in the rabbit carotid body and petrosal ganglion by in situ hybridization.
    Schamel A; Verna A
    Adv Exp Med Biol; 1993; 337():85-91. PubMed ID: 8109435
    [No Abstract]   [Full Text] [Related]  

  • 28. Peptide 19 in the rat vagal and glossopharyngeal sensory ganglia.
    Ichikawa H; Sugimoto T
    Brain Res; 2005 Mar; 1038(1):107-12. PubMed ID: 15748879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion.
    Kalia M; Mesulam MM
    J Comp Neurol; 1980 Sep; 193(2):435-65. PubMed ID: 7440777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Axonal delivery of soluble, insoluble and electrophoretic fractions of neuronal proteins to muscle.
    Appeltauer GS; Korr IM
    Exp Neurol; 1975 Jan; 46(1):132-46. PubMed ID: 45853
    [No Abstract]   [Full Text] [Related]  

  • 31. Presynaptic excitability changes induced in single laryngeal primary afferent fibres.
    Sessle BJ
    Brain Res; 1973 Apr; 53(2):333-42. PubMed ID: 4706032
    [No Abstract]   [Full Text] [Related]  

  • 32. [Transport of protein synthesized in the perikaryon to the axons of nerve cells (for example, the neurons of the superior cervical sympathetic ganglia)].
    Iarygin VN
    Arkh Anat Gistol Embriol; 1971 Oct; 61(10):30-5. PubMed ID: 5158164
    [No Abstract]   [Full Text] [Related]  

  • 33. The polypeptide composition of intra-axonally transported proteins: evidence for four transport velocities.
    Willard M; Cowan WM; Vagelos PR
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2183-7. PubMed ID: 4526302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of colchicine effects on rapid axonal transport and axonal morphology.
    Fink BR; Byers MR; Middaugh ME
    Brain Res; 1973 Jun; 56():299-311. PubMed ID: 4123712
    [No Abstract]   [Full Text] [Related]  

  • 35. Rate of fast axoplasmic transport in mammalian nerve fibres.
    Ochs S
    J Physiol; 1972 Dec; 227(3):627-45. PubMed ID: 4119621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of tyrosine hydroxylase and neuropeptide Y-like immunoreactive neurons in rabbit medulla oblongata, with attention to colocalization studies, presumptive adrenaline-synthesizing perikarya, and vagal preganglionic cells.
    Blessing WW; Howe PR; Joh TH; Oliver JR; Willoughby JO
    J Comp Neurol; 1986 Jun; 248(2):285-300. PubMed ID: 2424947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer of material from efferent axons to sensory epithelium in the goldfish vestibular system.
    Alvarez J; Püschel M
    Brain Res; 1972 Feb; 37(2):265-78. PubMed ID: 4110620
    [No Abstract]   [Full Text] [Related]  

  • 38. Locations of androgen-concentrating cells in the brain of Xenopus laevis: autoradiography with 3H-dihydrotestosterone.
    Kelley DB
    J Comp Neurol; 1981 Jun; 199(2):221-31. PubMed ID: 7251941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of proteins undergoing axonal transport in nigro-striatal neurons in the rat.
    Singh VK; Fibiger HC; McGeer EG; McGeer PL
    J Neurochem; 1974 Jan; 22(1):119-24. PubMed ID: 4150472
    [No Abstract]   [Full Text] [Related]  

  • 40. [Autoradiographic study of protein synthesis in perikaryons and its migration into axons of hypertrophied synpathetic neurons].
    Iarygin VN; Ionov BV
    Dokl Akad Nauk SSSR; 1973 Feb; 208(5):1253-6. PubMed ID: 4693107
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.