These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 5565077)

  • 1. The relationship between cleavage and blastocoel formation in Xenopus laevis. I. Light microscopic observations.
    Kalt MR
    J Embryol Exp Morphol; 1971 Aug; 26(1):37-49. PubMed ID: 5565077
    [No Abstract]   [Full Text] [Related]  

  • 2. The relationship between cleavage and blastocoel formation in Xenopus laevis. II. Electron microscopic observations.
    Kalt MR
    J Embryol Exp Morphol; 1971 Aug; 26(1):51-66. PubMed ID: 4105167
    [No Abstract]   [Full Text] [Related]  

  • 3. The relative rates of synthesis of DNA, sRNA and rRNA in the endodermal region and other parts of Xenopus laevis embryos.
    Woodland HR; Gurdon JB
    J Embryol Exp Morphol; 1968 May; 19(3):363-85. PubMed ID: 5667408
    [No Abstract]   [Full Text] [Related]  

  • 4. [A study of the ribosomes and of glycogen in gastrulae of Xenopus laevis by ultrastructural cytochemistry].
    Van Gansen P; Schram A
    J Embryol Exp Morphol; 1969 Aug; 22(1):69-98. PubMed ID: 5804910
    [No Abstract]   [Full Text] [Related]  

  • 5. The formation of somites in Xenopus.
    Hamilton L
    J Embryol Exp Morphol; 1969 Sep; 22(2):253-64. PubMed ID: 5361556
    [No Abstract]   [Full Text] [Related]  

  • 6. Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm.
    Essex LJ; Mayor R; Sargent MG
    Dev Dyn; 1993 Oct; 198(2):108-22. PubMed ID: 8305705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the primary mouth in Xenopus laevis.
    Dickinson AJ; Sive H
    Dev Biol; 2006 Jul; 295(2):700-13. PubMed ID: 16678148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inverse relation between the rate of cell division and RNA synthesis per cell in developing frog embryos.
    Flickinger RA; Lauth MR; Stambrook PJ
    J Embryol Exp Morphol; 1970 Jun; 23(3):571-82. PubMed ID: 5473305
    [No Abstract]   [Full Text] [Related]  

  • 9. Development of the dendrobatid frog Colostethus machalilla.
    Del Pino EM; Avila ME; Pérez OD; Benitez MS; Alarcón I; Noboa V; Moya IM
    Int J Dev Biol; 2004 Sep; 48(7):663-70. PubMed ID: 15470639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The formation and fate of the embryonic layers in the earthworm Eisinia foetida (annelida, oligocheta)].
    Devries J
    Arch Anat Microsc Morphol Exp; 1973; 62(1):15-38. PubMed ID: 4800230
    [No Abstract]   [Full Text] [Related]  

  • 11. Formation of the dorsal marginal zone in Xenopus laevis analyzed by time-lapse microscopic magnetic resonance imaging.
    Papan C; Boulat B; Velan SS; Fraser SE; Jacobs RE
    Dev Biol; 2007 May; 305(1):161-71. PubMed ID: 17368611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electron microscopic findings on the tail muscle fibers from tadpoles of Rana temporalis and Xenopus laevis].
    Schippel K; Reissig D
    Verh Anat Ges; 1969; 63():837-41. PubMed ID: 5378584
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of water-regulating mechanisms in the development of the haploid syndrome in Xenopus laevis.
    Hamilton L; Tuft PH
    J Embryol Exp Morphol; 1972 Oct; 28(2):449-62. PubMed ID: 4642996
    [No Abstract]   [Full Text] [Related]  

  • 14. [Electron microscopic findings on the chorda dorsalis of the tadpole tail in Rana temporaria and Xenopus laevis].
    Schippel K; Reissig D
    Verh Anat Ges; 1969; 63():831-5. PubMed ID: 5378583
    [No Abstract]   [Full Text] [Related]  

  • 15. Blastular arrest and chromosome abnormalities produced by x-rays in two amphibians: Rana pipiens and Xenopus laevis.
    Ursprung H; Leone J; Stein L
    J Exp Zool; 1968 Jul; 168(3):379-86. PubMed ID: 5692737
    [No Abstract]   [Full Text] [Related]  

  • 16. Time-lapse tracing of mitotic cell divisions in the early Xenopus embryo using microscopic MRI.
    Papan C; Boulat B; Velan SS; Fraser SE; Jacobs RE
    Dev Dyn; 2006 Nov; 235(11):3059-62. PubMed ID: 16958098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutritional endoderm: a way to breach the holoblastic-meroblastic barrier in tetrapods.
    Elinson RP
    J Exp Zool B Mol Dev Evol; 2009 Sep; 312(6):526-32. PubMed ID: 18473365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The four animal blastomeres of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives.
    Grunz H
    Int J Dev Biol; 1994 Mar; 38(1):69-76. PubMed ID: 8074997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA and nuclear size in early development of some invertebrates.
    Fallieri LA; Camey T; Schreiber MR; Schreiber G
    Genetics; 1969; 61(1):Suppl:171-81. PubMed ID: 5388069
    [No Abstract]   [Full Text] [Related]  

  • 20. Duration of karyomitosis and cell division in cleavage divisions II-IV in the clawed frog, Xenopus laevis.
    Rudneva TB
    Sov J Dev Biol; 1972; 3(6):526-30. PubMed ID: 4677475
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.