These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 556678)

  • 1. Parallel changes in behaviour and hippocampal serotonin metabolism in rats following treatment with desglycinamide lysine vasopressin.
    Ramaekers F; Rigter H; Leonard BE
    Brain Res; 1977 Jan; 120(3):485-92. PubMed ID: 556678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent anti-amnesic effect of ACTH4-10 and desglycinamide-lysine vasopressin.
    Rigter H; Elbertse R; van Riezen H
    Prog Brain Res; 1975; 42():163-71. PubMed ID: 172961
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of vasopressin analogue, desglycinamide lysine vasopressin, on changes in hippocampal monoamine metabolism associated with passive avoidance and amnesia in the rat [proceedings].
    Leonard BE; Ramaekers F; Rigter H
    Act Nerv Super (Praha); 1977 May; 19(2):160-2. PubMed ID: 18873
    [No Abstract]   [Full Text] [Related]  

  • 4. Hippocampal monoamine metabolism and the CO2 induced retrograde amnesia gradient in rats.
    Rigter H; Van Eys G; Leonard BE
    Pharmacol Biochem Behav; 1975; 3(5):781-5. PubMed ID: 1239773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of lysine vasopressin on pentylenetetrazol-induced retrograde amnesia in rats.
    Bookin HB; Pfeifer WD
    Pharmacol Biochem Behav; 1977 Jul; 7(1):51-4. PubMed ID: 561964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel changes in behaviour and hippocampal monoamine metabolism in rats after administration of ACTH-analogues.
    Ramaekers F; Rigter H; Leonard BE
    Pharmacol Biochem Behav; 1978 May; 8(5):547-51. PubMed ID: 209481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent aspects of CO2 induced amnesia and hippocampal monoamine metabolism in rats.
    Van Eys G; Rigter H; Leonard BE
    Pharmacol Biochem Behav; 1975; 3(5):787-93. PubMed ID: 1239774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in brain monoamine metabolism and carbon dioxide induced amnesia in the rat.
    Leonard BE; Rigter H
    Pharmacol Biochem Behav; 1975; 3(5):775-80. PubMed ID: 1239772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of amnesia by an orally active ACTH 4-9 analog (Org 2766).
    Rigter H; Janssens-Elbertse R; Van Riezen H
    Pharmacol Biochem Behav; 1976; 5(Suppl 1):53-8. PubMed ID: 189332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasopressin antagonizes retrograde amnesia in rats following electroconvulsive shock.
    Pfeifer WD; Bookin HB
    Pharmacol Biochem Behav; 1978 Aug; 9(2):261-3. PubMed ID: 568802
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of vasopressin analogues on passive avoidance behavior.
    Krejcí I; Kupková B
    Act Nerv Super (Praha); 1978 Feb; 20(1):11-2. PubMed ID: 636749
    [No Abstract]   [Full Text] [Related]  

  • 12. Lysine vasopressin attenuation of diethyldithiocarbamate-induced amnesia.
    Asin KE
    Pharmacol Biochem Behav; 1980 Mar; 12(3):343-6. PubMed ID: 6248894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMDA receptor subunit and CaMKII changes in rat hippocampus induced by acute MDMA treatment: a mechanism for learning impairment.
    Moyano S; Frechilla D; Del Río J
    Psychopharmacology (Berl); 2004 May; 173(3-4):337-45. PubMed ID: 14985918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of ACTH- and vasopressin- analogues on CO2-induced retrograde amnesia in rats.
    Rigter H; Van Riezen H; De Wied D
    Physiol Behav; 1974 Sep; 13(3):381-8. PubMed ID: 4373770
    [No Abstract]   [Full Text] [Related]  

  • 15. Dorsal hippocampus: a site of action of neuropeptides on avoidance behavior?
    Greidanus TB; De Wied D
    Pharmacol Biochem Behav; 1976; 5(Suppl 1):29-33. PubMed ID: 189329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of lysine-vasopressin upon short-term recall of a noxious significance.
    Frucht-Celaru M; Sterescu-Volanschi M
    Physiologie; 1975; 12(4):285-9. PubMed ID: 814562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-dependent disruption of passive avoidance acquisition by post-training intra-amygdala injection of tetrodotoxin in rats.
    Bucherelli C; Tassoni G; Bures J
    Neurosci Lett; 1992 Jun; 140(2):231-4. PubMed ID: 1501784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An inability of subcutaneous vasopressin to affect passive avoidance behavior.
    Hostetter G; Jubb SL; Kozlowski GP
    Neuroendocrinology; 1980; 30(3):174-7. PubMed ID: 7366802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of vasopressin on the brain lipid metabolism during learning and retention of conditioned avoidance behaviour.
    Patchev V; Dishkelov A
    Acta Physiol Pharmacol Bulg; 1987; 13(3):51-5. PubMed ID: 3439475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pinealectomy and melatonin on vasopressin-potentiated passive avoidance in rats.
    Juszczak M; Drobnik J; Guzek JW; Schwarzberg H
    J Physiol Pharmacol; 1996 Dec; 47(4):621-7. PubMed ID: 9116329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.