BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 5567525)

  • 1. Fine structural localization of alkaline phosphomonoesterase in the fracture callus of the rat.
    Göthlin G; Ericsson JL
    Isr J Med Sci; 1971 Mar; 7(3):488-90. PubMed ID: 5567525
    [No Abstract]   [Full Text] [Related]  

  • 2. Neutral protein-degrading enzymes in experimental fracture callus: a preliminary report.
    Einhorn TA; Hirschman A; Kaplan C; Nashed R; Devlin VJ; Warman J
    J Orthop Res; 1989; 7(6):792-805. PubMed ID: 2677285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the mechanism of callus cartilage differentiation and calcification during fracture healing.
    Ketenjian AY; Jafri AM; Arsenis C
    Orthop Clin North Am; 1978 Jan; 9(1):43-65. PubMed ID: 643267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Electron microscopic studies on the alkaline phosphatase in the enchondral calcification].
    Yamaguchi M
    Kumamoto Igakkai Zasshi; 1970 Aug; 44(8):732-58. PubMed ID: 5536339
    [No Abstract]   [Full Text] [Related]  

  • 5. Alkaline and acid phosphatase activity in the initial phase of fracture healing.
    Raekallio J; Mäkinen PL
    Acta Pathol Microbiol Scand; 1969; 75(3):415-22. PubMed ID: 5801661
    [No Abstract]   [Full Text] [Related]  

  • 6. Ultrastructural investigation on experimental fracture healing. VI. Electron microscopic observation on matrix vesicles.
    Chai BF; Tang XM
    Chin Med J (Engl); 1984 Nov; 97(11):805-12. PubMed ID: 6443271
    [No Abstract]   [Full Text] [Related]  

  • 7. Fine structural localization of alkaline phosphatase in the fracture callus of the rat.
    Göthlin G; Ericsson JL
    Histochemie; 1973; 36(3):225-36. PubMed ID: 4757993
    [No Abstract]   [Full Text] [Related]  

  • 8. [Behavior of alkaline serum phosphatase during fracture healing].
    Heimann D; Keller R; Schlachetzki J
    Monatsschr Unfallheilkd Versicher Versorg Verkehrsmed; 1973 Apr; 76(4):168-74. PubMed ID: 4267090
    [No Abstract]   [Full Text] [Related]  

  • 9. Hematological and metabolic effects of calcium and vitamin D deficiency and bone fracture in rats.
    Lindholm TS; Hackman R
    Acta Chir Scand Suppl; 1974; 449():43-6. PubMed ID: 4533569
    [No Abstract]   [Full Text] [Related]  

  • 10. [Healing of experimental bone fractures following choledochus ligature and consecutive increase of alkaline serum phosphatase].
    Heimann D
    Monatsschr Unfallheilkd Versicher Versorg Verkehrsmed; 1974 Apr; 77(4):162-72. PubMed ID: 4277094
    [No Abstract]   [Full Text] [Related]  

  • 11. [Ultrastructural investigation on healing of experimental fracture (author's transl)].
    Chai BF
    Zhonghua Wai Ke Za Zhi; 1979; 17(5):368-71. PubMed ID: 556015
    [No Abstract]   [Full Text] [Related]  

  • 12. Localisation of bone-forming cells during fracture healing by osteocalcin immunocytochemistry: an experimental study of the rabbit tibia.
    Stafford HJ; Roberts MT; Oni OO; Hay J; Gregg P
    J Orthop Res; 1994 Jan; 12(1):29-39. PubMed ID: 8113940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periostin-like-factor in osteogenesis.
    Zhu S; Barbe MF; Liu C; Hadjiargyrou M; Popoff SN; Rani S; Safadi FF; Litvin J
    J Cell Physiol; 2009 Mar; 218(3):584-92. PubMed ID: 19006175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Enzymatic activity in the osteoblasts of rabbits following combined trauma].
    Gendler EM
    Biull Eksp Biol Med; 1975 Oct; 80(10):63-5. PubMed ID: 179642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Staphylococcal enterotoxin C injection in combination with ascorbic acid promotes the differentiation of bone marrow-derived mesenchymal stem cells into osteoblasts in vitro.
    Wan XC; Liu CP; Li M; Hong D; Li DM; Chen HX; Li JC
    Biochem Biophys Res Commun; 2008 Sep; 373(4):488-92. PubMed ID: 18572015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Basic processes of reparative osteogenesis. Their role in the outcome of fractures and bone grafts].
    Duriez J
    Rev Chir Orthop Reparatrice Appar Mot; 1972; 58():Suppl 1:11-30. PubMed ID: 4263966
    [No Abstract]   [Full Text] [Related]  

  • 17. [Animal experiments on the behavior of serum alkaline phosphatase during the healing of fractures].
    Heilmann D; Pallmann M
    Bruns Beitr Klin Chir (1971); 1973 Oct; 220(6):649-58. PubMed ID: 4766126
    [No Abstract]   [Full Text] [Related]  

  • 18. Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation.
    Lind M
    Acta Orthop Scand Suppl; 1998 Oct; 283():2-37. PubMed ID: 9856074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of alkaline phosphatase activity in experimentally produced callus in rats.
    Volpin G; Rees JA; Ali SY; Bentley G
    J Bone Joint Surg Br; 1986 Aug; 68(4):629-34. PubMed ID: 3733843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic growth peptide modulates fracture callus structural and mechanical properties.
    Gabet Y; Müller R; Regev E; Sela J; Shteyer A; Salisbury K; Chorev M; Bab I
    Bone; 2004 Jul; 35(1):65-73. PubMed ID: 15207742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.