These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 5568461)
1. The buffer value of rat diaphragm muscle tissue determined by P CO2 equilibration of homogenates. Heisler N; Piiper J Respir Physiol; 1971 Jun; 12(2):169-78. PubMed ID: 5568461 [No Abstract] [Full Text] [Related]
2. Determination of intracellular buffering properties in rat diaphragm muscle. Heisler N; Piiper J Am J Physiol; 1972 Mar; 222(3):747-53. PubMed ID: 5022689 [No Abstract] [Full Text] [Related]
3. Significance of the extracellular bicarbonate buffer system to anaerobic glycolysis in hypoxic muscle. Gesser H Acta Physiol Scand; 1976 Sep; 98(1):110-5. PubMed ID: 9777 [TBL] [Abstract][Full Text] [Related]
4. The role of bicarbonate in determining pH heterogeneity in rat diaphragm. Adler S; Anderson B; Zett B J Lab Clin Med; 1972 Nov; 80(5):679-85. PubMed ID: 5081665 [No Abstract] [Full Text] [Related]
5. Intracellular pH and buffering power of rat muscle. Roos A Am J Physiol; 1971 Jul; 221(1):182-8. PubMed ID: 4253930 [No Abstract] [Full Text] [Related]
6. Intracellular pH of isolated rat diaphragm muscle with metabolic and respiratory changes of extracellular pH. Heisler N Respir Physiol; 1975 Mar; 23(2):243-55. PubMed ID: 238267 [TBL] [Abstract][Full Text] [Related]
7. The role of pH, PCO2, and bicarbonate in regulating rat diaphragm citrate content. Adler S J Clin Invest; 1970 Sep; 49(9):1647-55. PubMed ID: 5449704 [TBL] [Abstract][Full Text] [Related]
8. Intracellular buffering of heart and skeletal muscles during the onset of hypercapnia. Bettice JA; Wang BC; Brown EB Respir Physiol; 1976 Oct; 28(1):89-98. PubMed ID: 10616 [TBL] [Abstract][Full Text] [Related]
9. Intracellular pH, H ion flux and H ion permeability coefficient in bullfrog toe muscle. Izutsu KT J Physiol; 1972 Feb; 221(1):15-27. PubMed ID: 4536964 [TBL] [Abstract][Full Text] [Related]
10. Carbon dioxide and acid base balance in the isolated rat diaphragm. Cechetto D; Mainwood GW Pflugers Arch; 1978 Sep; 376(3):251-8. PubMed ID: 30070 [TBL] [Abstract][Full Text] [Related]
11. Effect of ammonium chloride on rubidium-induced changes in muscle cell bicarbonate. Hudson JB Am J Physiol; 1969 Oct; 217(4):1105-9. PubMed ID: 5824311 [No Abstract] [Full Text] [Related]
12. Mechanisms of cardiac muscle adjustment to hypercapnia. Lai YL; Attebery BA; Brown EB Respir Physiol; 1973 Nov; 19(2):123-9. PubMed ID: 4763077 [No Abstract] [Full Text] [Related]
16. Permeability of interstitial space of muscle (rat diaphragm) to solutes of different molecular weights. Schultz JS; Armstrong W J Pharm Sci; 1978 May; 67(5):696-700. PubMed ID: 641813 [TBL] [Abstract][Full Text] [Related]
17. Indirect determination of mean whole body and intracellular CO2 and buffer capacity. Albers C; Ludwig O; Usinger W; Spaich P Respir Physiol; 1971 Jan; 11(2):197-210. PubMed ID: 5540206 [No Abstract] [Full Text] [Related]
18. INTRACELLULAR ACID-BASE REGULATION. I. THE RESPONSE OF MUSCLE CELLS TO CHANGES IN CO2 TENSION OR EXTRACELLULAR BICARBONATE CONCENTRATION. ADLER S; ROY A; RELMAN AS J Clin Invest; 1965 Jan; 44(1):8-20. PubMed ID: 14254260 [No Abstract] [Full Text] [Related]
19. Dilution acidosis and contraction alkalosis: review of a concept. Garella S; Chang BS; Kahn SI Kidney Int; 1975 Nov; 8(5):279-83. PubMed ID: 536 [No Abstract] [Full Text] [Related]
20. The simultaneous determination of muscle cell pH using a weak acid and weak base. Adler S J Clin Invest; 1972 Feb; 51(2):256-65. PubMed ID: 5009113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]