These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 556950)
1. Nitrotyrosine chelation of nuclear magnetic resonance shift probes in proteins: application to bovine pancreatic trypsin inhibitor. Marinetti TD; Snyder GH; Sykes BD Biochemistry; 1977 Feb; 16(4):647-53. PubMed ID: 556950 [TBL] [Abstract][Full Text] [Related]
2. Nuclear magnetic resonance determination of intramolecular distances in bovine pancreatic trypsin inhibitor using nitrotyrosine chelation of lanthanides. Marinetti TD; Snyder GH; Sykes BD Biochemistry; 1976 Oct; 15(21):4600-8. PubMed ID: 9977 [TBL] [Abstract][Full Text] [Related]
3. Ring current effects in the conformation dependent NMR chemical shifts of aliphatic protons in the basic pancreatic trypsin inhibitor. Perkins SJ; Wüthrich K Biochim Biophys Acta; 1979 Feb; 576(2):409-23. PubMed ID: 427198 [TBL] [Abstract][Full Text] [Related]
4. A study of the lysyl residues in the basic pancreatic trypsin inhibitor using 1H nuclear magnetic resonance at 360 Mhz. Brown LR; De Marco A; Wagner G; Wüthrich K Eur J Biochem; 1976 Feb; 62(1):103-7. PubMed ID: 2474 [TBL] [Abstract][Full Text] [Related]
5. [Determination and comparative analysis of the conformation of bovine pancreatic trypsin inhibitor and trypsin inhibitors E and K from the data of two-dimensional 1H-NMR spectroscopy]. Sherman SA; Andrianov AM Mol Biol (Mosk); 1985; 19(5):1301-9. PubMed ID: 4079926 [TBL] [Abstract][Full Text] [Related]
6. Complete tyrosine assignments in the high field 1H nuclear magnetic resonance spectrum of the bovine pancreatic trypsin inhibitor. Snyder GH; Rowan R; Karplus S; Sykes BD Biochemistry; 1975 Aug; 14(17):3765-77. PubMed ID: 240394 [TBL] [Abstract][Full Text] [Related]
7. Complete tyrosine assignments in the high-field 1H nuclear magnetic resonance spectrum of bovine pancreatic trypsin inhibitor selectively reduced and carboxamidomethylated at cystine 14-38. Snyder GH; Rowan R; Sykes BD Biochemistry; 1976 Jun; 15(11):2275-83. PubMed ID: 6043 [TBL] [Abstract][Full Text] [Related]
8. The location of the calcium ion binding site in bovine alpha-trypsin and beta-trypsin using lanthanide ion probes. Abbott F; Gomez JE; Birnbaum ER; Darnall DW Biochemistry; 1975 Nov; 14(22):4935-43. PubMed ID: 1237314 [TBL] [Abstract][Full Text] [Related]
9. 1H nuclear-magnetic-resonance studies of the porcine-pancreatic secretory trypsin inhibitor at 270 MHz. De Marco A; Menegatti E; Guarneri M Eur J Biochem; 1979 Dec; 102(1):185-94. PubMed ID: 520321 [TBL] [Abstract][Full Text] [Related]
10. Analysis of electrostatic interactions and their relationship to conformation and stability of bovine pancreatic trypsin inhibitor. March KL; Maskalick DG; England RD; Friend SH; Gurd FR Biochemistry; 1982 Oct; 21(21):5241-51. PubMed ID: 7171553 [TBL] [Abstract][Full Text] [Related]
11. pH and temperature effects on the molecular conformation of the porcine pancreatic secretory trypsin inhibitor as detected by hydrogen-1 nuclear magnetic resonance. De Marco A; Menegatti E; Guarneri M Biochemistry; 1982 Jan; 21(2):222-9. PubMed ID: 6803827 [TBL] [Abstract][Full Text] [Related]
12. A 1H nuclear-magnetic-resonance study of the conformation and the molecular dynamics of the glycoprotein cow-colostrum trypsin inhibitor. Wagner G; Wütherich K; Tschesche H Eur J Biochem; 1978 May; 86(1):67-76. PubMed ID: 658047 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen kinetics of peptide amide protons at the bovine pancreatic trypsin inhibitor protein-solvent interface. Tüchsen E; Woodward C J Mol Biol; 1985 Sep; 185(2):405-19. PubMed ID: 2414451 [TBL] [Abstract][Full Text] [Related]
14. 1H-NMR studies of the structure and stability of the bovine pancreatic secretory trypsin inhibitor. De Marco A; Menegatti E; Guarneri M J Biol Chem; 1982 Jul; 257(14):8337-42. PubMed ID: 7085670 [TBL] [Abstract][Full Text] [Related]
15. Structural information from NMR secondary chemical shifts of peptide alpha C-H protons in proteins. Dalgarno DC; Levine BA; Williams RJ Biosci Rep; 1983 May; 3(5):443-52. PubMed ID: 6882888 [TBL] [Abstract][Full Text] [Related]
16. Strategies for the uses of lanthanide NMR shift probes in the determination of protein structure in solutio. Application to the EF calcium binding site of carp parvalbumin. Lee L; Sykes BD Biophys J; 1980 Oct; 32(1):193-210. PubMed ID: 7248448 [TBL] [Abstract][Full Text] [Related]
17. Two-dimensional NMR spectroscopy: an application to the study of flexibility of protein molecules. Nagayama K Adv Biophys; 1981; 14():139-204. PubMed ID: 7015809 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Woodward CK; Hilton BD Biophys J; 1980 Oct; 32(1):561-75. PubMed ID: 7248461 [TBL] [Abstract][Full Text] [Related]
19. Fluctuations and averaging of proton chemical shifts in the bovine pancreatic trypsin inhibitor. Hoch JC; Dobson CM; Karplus M Biochemistry; 1982 Mar; 21(6):1118-25. PubMed ID: 6280757 [TBL] [Abstract][Full Text] [Related]
20. The analysis of NMR relaxation data in terms of multiple internal motions. Jardetzky O; Ribeiro AA; King R Biochem Biophys Res Commun; 1980 Feb; 92(3):883-8. PubMed ID: 7362612 [No Abstract] [Full Text] [Related] [Next] [New Search]