These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 5569902)

  • 1. Fluoride inhibition of glucose-6-P formation in Streptococcus salivarius: relation to glycogen synthesis and degradation.
    Kanapka JA; Khandelwal RL; Hamilton IR
    Arch Biochem Biophys; 1971 Jun; 144(2):596-602. PubMed ID: 5569902
    [No Abstract]   [Full Text] [Related]  

  • 2. Fluoride inhibition of enolase activity in vivo and its relationship to the inhibition of glucose-6-P formation in Streptococcus salivarius.
    Kanapka JA; Hamilton IR
    Arch Biochem Biophys; 1971 Sep; 146(1):167-74. PubMed ID: 5144023
    [No Abstract]   [Full Text] [Related]  

  • 3. Some regulatory properties of glycogen phosphorylase from Streptococcus salivarius.
    Spearman TN; Khandelwal RL; Hamilton IR
    Arch Biochem Biophys; 1973 Jan; 154(1):306-13. PubMed ID: 4347682
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies with fluoride-sensitive and fluoride-resistant strains of Streptococcus salivarius. II. Fluoride inhibition of glucose metabolism.
    Hamilton IR
    Can J Microbiol; 1969 Sep; 15(9):1021-7. PubMed ID: 5371926
    [No Abstract]   [Full Text] [Related]  

  • 5. Labeling of rat liver glucose-1-phosphate, glucose-6-phosphate, uridine diphosphate glucose, and glycogen during glycogen synthesis.
    Das I; Sie HG; Fishman WH
    Arch Biochem Biophys; 1971 Jun; 144(2):715-22. PubMed ID: 4328163
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies with fluoride-sensitive and fluoride-resistant strains of Streptococcus salivarius. I. Inhibition of both intracellular polyglucose synthesis and degradation by fluoride.
    Hamilton IR
    Can J Microbiol; 1969 Sep; 15(9):1013-9. PubMed ID: 5371925
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of testosterone on glycogen metabolism in rat levator ani muscle.
    Bergamini E; Bombara G; Pellegrino C
    Biochim Biophys Acta; 1969 Apr; 177(2):220-34. PubMed ID: 5780084
    [No Abstract]   [Full Text] [Related]  

  • 8. [THE EFFECT OF CORTISOL ON THE TRANSFORMATION OF HEXOSEPHOSPHATES IN GLYCOGEN)].
    TARNOWSKI W; KITTLER M; HILZ H
    Biochem Z; 1964 Dec; 341():45-63. PubMed ID: 14339653
    [No Abstract]   [Full Text] [Related]  

  • 9. Biosynthesis of bacterial glycogen. XI. Kinetic characterization of an altered adenosine diphosphate-glucose synthase from a "glycogen-excess" mutant of Escherichia coli B.
    Govons S; Gentner N; Greenberg E; Preiss J
    J Biol Chem; 1973 Mar; 248(5):1731-40. PubMed ID: 4144395
    [No Abstract]   [Full Text] [Related]  

  • 10. [Synthesis of glucose-1,6-diphosphate in human erythrocytes].
    Fornaini G; Calero B; DachĂ  M; Fazi A; Schiavo E
    Boll Soc Ital Biol Sper; 1970 Sep; 46(18):739-42. PubMed ID: 5502066
    [No Abstract]   [Full Text] [Related]  

  • 11. SYSTEM OF URIDINE DIPHOSPHATE GLUCOSE AND OF GLYCOGEN TRANSFORMATION IN ASCITES CANCER CELLS.
    KHARCHENKO MF; SEITZ IF
    Fed Proc Transl Suppl; 1965; 24():121-5. PubMed ID: 14275568
    [No Abstract]   [Full Text] [Related]  

  • 12. Glycogen synthesis and glycogen synthetase in rat ascites hepatomas of low and high glycogen content.
    Saheki R; Sato K; Tsuiki S
    Biochim Biophys Acta; 1971; 230(3):571-82. PubMed ID: 4325681
    [No Abstract]   [Full Text] [Related]  

  • 13. Glucose 6-phosphate dependent and independent forms of yeast glycogen synthetase. Their properties and interconversions.
    Rothman-Denes LB; Cabib E
    Biochemistry; 1971 Mar; 10(7):1236-42. PubMed ID: 5553327
    [No Abstract]   [Full Text] [Related]  

  • 14. Purification and properties of glycogen phosphorylase from Streptococcus salivarius.
    Khandelwal RL; Spearman TN; Hamilton IR
    Arch Biochem Biophys; 1973 Jan; 154(1):295-305. PubMed ID: 4689781
    [No Abstract]   [Full Text] [Related]  

  • 15. Biosynthesis of bacterial glycogen IX: regulatory properties of the adenosine diphosphate glucose pyrophosphrylases of the Enterobacterieae.
    Ribéreau-Gayon G; Sabraw A; Lammel C; Preiss J
    Arch Biochem Biophys; 1971 Feb; 142(2):675-92. PubMed ID: 4396287
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on the synthesis of CDP-diacylglycerol: stimulation by GTP and inhibition by ATP and fluoride.
    Sribney M; Dove JL; Lyman EM
    Biochem Biophys Res Commun; 1977 Dec; 79(3):749-55. PubMed ID: 597305
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolic intermediates in liver of rats given large amounts of fructose or dihydroxyacetone.
    Burch HB; Max P; Ghyu K; Lowry OH
    Biochem Biophys Res Commun; 1969 Mar; 34(5):619-26. PubMed ID: 5777779
    [No Abstract]   [Full Text] [Related]  

  • 18. Nucleotide inhibition of mammalian liver galactose-I-phosphate uridylyltransferase.
    Segal S; Rogers S
    Biochim Biophys Acta; 1971 Nov; 250(2):351-60. PubMed ID: 5143342
    [No Abstract]   [Full Text] [Related]  

  • 19. Glycogenolysis and glycogen synthesis in a cell-free system from rat liver.
    Scott RB; Cooper LW
    Biochem Biophys Res Commun; 1971 Sep; 44(5):1071-6. PubMed ID: 5160399
    [No Abstract]   [Full Text] [Related]  

  • 20. Glycogenesis and glyconeogenesis in human platelets. Incorporation of glucose, pyruvate, and citrate into platelet glycogen; glycogen synthetase and fructose-1,6-diphosphatase activity.
    Karpatkin S; Charmatz A; Langer RM
    J Clin Invest; 1970 Jan; 49(1):140-9. PubMed ID: 5409802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.