BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 5570437)

  • 1. Metabolism of basic amino acids in Pseudomonas putida. Intermediates in L-arginine catabolism.
    Miller DL; Rodwell VW
    J Biol Chem; 1971 Aug; 246(16):5053-8. PubMed ID: 5570437
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of basic amino acids in Pseudomonas putida. -guanidinobutyrate amidinohydrolase.
    Chou CS; Rodwell VW
    J Biol Chem; 1972 Jul; 247(14):4486-90. PubMed ID: 5043851
    [No Abstract]   [Full Text] [Related]  

  • 3. Intermediates and enzymes between alpha-ketoarginine and gamma-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida.
    Vanderbilt AS; Gaby NS; Rodwell VW
    J Biol Chem; 1975 Jul; 250(14):5322-9. PubMed ID: 237915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of basic amino acids in Pseudomonas putida. Transport of lysine, ornithine, and arginine.
    Fan CL; Miller DL; Rodwell VW
    J Biol Chem; 1972 Apr; 247(8):2283-8. PubMed ID: 5019949
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification of alpha-ketobutyrate as the prosthetic group of urocanase from Pseudomonas putida.
    George DJ; Phillips AT
    J Biol Chem; 1970 Feb; 245(3):528-37. PubMed ID: 5412708
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolism of basic amino acids in Pseudomonas putida. Properties of the inducible lysine transport system.
    Miller DL; Rodwell VW
    J Biol Chem; 1971 Mar; 246(6):1765-71. PubMed ID: 5547703
    [No Abstract]   [Full Text] [Related]  

  • 7. Catabolism of pipecolate to glutamate in Pseudomonas putida.
    Perfetti R; Campbell RJ; Titus J; Hartline RA
    J Biol Chem; 1972 Jun; 247(12):4089-95. PubMed ID: 5033403
    [No Abstract]   [Full Text] [Related]  

  • 8. Nitrogen metabolism of the South American lungfish Lepidosiren paradoxa.
    Carlisky NJ; Barrio A
    Comp Biochem Physiol B; 1972 Apr; 41(4):857-73. PubMed ID: 5032174
    [No Abstract]   [Full Text] [Related]  

  • 9. Aerobic metabolism of L- -lysine in a Pseudomonas. Coenzyme A-dependent acetylation of L- -lysine.
    Edmunds HN; Barker HA
    Arch Biochem Biophys; 1973 Jan; 154(1):460-70. PubMed ID: 4689786
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzymatic production of L-citrulline by Pseudomonas putida.
    Kakimoto T; Shibatani T; Nishimura N; Chibata I
    Appl Microbiol; 1971 Dec; 22(6):992-9. PubMed ID: 5137589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of basic amino acids in Pseudomonas putida. Catabolism of lysine by cyclic and acyclic intermediates.
    Miller DL; Rodwell VW
    J Biol Chem; 1971 May; 246(9):2758-64. PubMed ID: 5554291
    [No Abstract]   [Full Text] [Related]  

  • 12. Urocanase of Pseudomonas putida. Subunit structure and origin of enzyme-bound -ketobutyrate.
    Lynch MC; Phillips AT
    J Biol Chem; 1972 Dec; 247(23):7799-805. PubMed ID: 4404600
    [No Abstract]   [Full Text] [Related]  

  • 13. Nitrogen metabolism of Picea glauca. IV. Metabolism of uniformly labelled 14-C-L-arginine, [carbamyl-14C]-L-citrulline, and [1,2,3,4-14C]-gamma-guanidinobutyric acid during diurnal changes in the soluble and protein nitrogen associated with the onset of expansion of spruce buds.
    Durzan DJ
    Can J Biochem; 1969 Aug; 47(8):771-83. PubMed ID: 5822104
    [No Abstract]   [Full Text] [Related]  

  • 14. Arginine racemase of Pseudomonas graveolens. I. Purification, crystallization, and properties.
    Yorifuji T; Ogata K
    J Biol Chem; 1971 Aug; 246(16):5085-92. PubMed ID: 5570439
    [No Abstract]   [Full Text] [Related]  

  • 15. Formation of alpha-ketoglutaric semialdehyde from L-2-keto-3-deoxyarabonic acid and isolation of L-2-keto-3-deoxyarabonate dehydratase from Pseudomonas saccharophila.
    Stoolmiller AC; Abeles RH
    J Biol Chem; 1966 Dec; 241(24):5764-71. PubMed ID: 5954356
    [No Abstract]   [Full Text] [Related]  

  • 16. 2-keto-4-hydroxybutyrate aldolase. Identification as 2-keto-4-hydroxyglutarate aldolase, catalytic properties, and role in the mammalian metabolism of L-homoserine.
    Lane RS; Shapley A; Dekker EE
    Biochemistry; 1971 Apr; 10(8):1353-64. PubMed ID: 5580656
    [No Abstract]   [Full Text] [Related]  

  • 17. Physiological consequences of starvation in Pseudomonas putida: degradation of intracellular protein and loss of activity of the inducible enzymes of L-arginine catabolism.
    Fan CL; Rodwell VW
    J Bacteriol; 1975 Dec; 124(3):1302-11. PubMed ID: 1194237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine transport and metabolism in osmotically shocked and unshocked cells of Escherichia coli W.
    Wilson OH; Holden JT
    J Biol Chem; 1969 May; 244(10):2737-42. PubMed ID: 4890230
    [No Abstract]   [Full Text] [Related]  

  • 19. Molecular specificity of the L-arginine reabsorption mechanism. Microperfusion studies in the proximal tubule of rat kidney.
    Silbernagl S; Deetjen P
    Pflugers Arch; 1973 Jun; 340(4):325-34. PubMed ID: 4737007
    [No Abstract]   [Full Text] [Related]  

  • 20. Composition and structure of the ornithine-containing lipid from Pseudomonas rubescens.
    Wilkinson SG
    Biochim Biophys Acta; 1972 May; 270(1):1-17. PubMed ID: 5037328
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.