These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 5573355)

  • 1. The breakdown of tropic acid in Pseudomonas putida strain L. I. Utilization of various substrates; the conversion of tropic acid into phenylacetic acid.
    Stevens WF; Rörsch A
    Biochim Biophys Acta; 1971 Feb; 230(2):204-11. PubMed ID: 5573355
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzymology of oxidation of tropic acid to phenylacetic acid in metabolism of atropine by Pseudomonas sp. strain AT3.
    Long MT; Bartholomew BA; Smith MJ; Trudgill PW; Hopper DJ
    J Bacteriol; 1997 Feb; 179(4):1044-50. PubMed ID: 9023182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the meta-cleavage of 4-hydroxyphenylacetic acid by Pseudomonas putida.
    Barbour MG; Bayly RC
    Biochem Biophys Res Commun; 1976 May; 76(2):565-71. PubMed ID: 1027447
    [No Abstract]   [Full Text] [Related]  

  • 4. The metabolism of phenylacetic acid by a Pseudomonas.
    Blakley ER; Kurz W; Halvorson H; Simpson FJ
    Can J Microbiol; 1967 Feb; 13(2):147-57. PubMed ID: 4382429
    [No Abstract]   [Full Text] [Related]  

  • 5. The degradation of L-histidine, imidazolyl-L-lactate and imidazolylpropionate by Pseudomonas testosteroni.
    Coote JG; Hassall H
    Biochem J; 1973 Mar; 132(3):409-22. PubMed ID: 4146796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The metabolism of p-fluorophenylacetic acid by a Pseudomonas sp. II. The degradative pathway.
    Harper DB; Blakley ER
    Can J Microbiol; 1971 May; 17(5):645-50. PubMed ID: 5087890
    [No Abstract]   [Full Text] [Related]  

  • 7. A comparative study in vivo of enzyme activities in batch, continuous, and phased cultures of a pseudomonad grown on phenylacetic acid.
    Kurz WG; Dawsan PS; Blakley ER
    Can J Microbiol; 1969 Jan; 15(1):27-33. PubMed ID: 5765175
    [No Abstract]   [Full Text] [Related]  

  • 8. The genetic control of dissimilatory pathways in Pseudomonas putida.
    Wheelis ML; Stanier RY
    Genetics; 1970 Oct; 66(2):245-66. PubMed ID: 5525301
    [No Abstract]   [Full Text] [Related]  

  • 9. [Degradation of DDT to phenylacetic acid by a culture of Psuedomonas sp. 640x].
    Skriabin GK; Golovleva LA; Ziakun AM; Pertsova RN; Shurukhin IuV
    Dokl Akad Nauk SSSR; 1977 Dec; 237(5):1212-5. PubMed ID: 590085
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of a second functional gene cluster for the catabolism of phenylacetic acid in Pseudomonas sp. strain Y2.
    Bartolomé-Martín D; Martínez-García E; Mascaraque V; Rubio J; Perera J; Alonso S
    Gene; 2004 Oct; 341():167-79. PubMed ID: 15474299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of 4-chlorophenylacetic acid by a Pseudomonas species.
    Klages U; Markus A; Lingens F
    J Bacteriol; 1981 Apr; 146(1):64-8. PubMed ID: 7217006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenylacetate-coenzyme A ligase is induced during growth on phenylacetic acid in different bacteria of several genera.
    Vitovski S
    FEMS Microbiol Lett; 1993 Mar; 108(1):1-5. PubMed ID: 8472917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The isolation and identification of 6-hydroxycyclohepta-1,4-dione as a novel intermediate in the bacterial degradation of atropine.
    Bartholomew BA; Smith MJ; Long MT; Darcy PJ; Trudgill PW; Hopper DJ
    Biochem J; 1993 Jul; 293 ( Pt 1)(Pt 1):115-8. PubMed ID: 8328951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon catabolite regulation of phenylacetyl-CoA ligase from Pseudomonas putida.
    Martinez-Blanco H; Reglero A; Luengo JM
    Biochem Biophys Res Commun; 1990 Mar; 167(3):891-7. PubMed ID: 2322284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The microbiological metabolism of atropine, 3. The metabolism of phenylacetic acid.
    Niemer H; Zeitler HJ
    Hoppe Seylers Z Physiol Chem; 1967 Feb; 348(2):240-1. PubMed ID: 6033885
    [No Abstract]   [Full Text] [Related]  

  • 16. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3.
    Ward PG; de Roo G; O'Connor KE
    Appl Environ Microbiol; 2005 Apr; 71(4):2046-52. PubMed ID: 15812037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon.
    Olivera ER; Miñambres B; García B; Muñiz C; Moreno MA; Ferrández A; Díaz E; García JL; Luengo JM
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6419-24. PubMed ID: 9600981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of p-coumaric acid to caffeic acid and of p-hydroxyphenylacetic acid to 3,4-dihydroxyphenylacetic acid by Alnus rubra.
    Li CY
    Lloydia; 1977; 40(3):298-30. PubMed ID: 895387
    [No Abstract]   [Full Text] [Related]  

  • 19. Enzyme evolution in a microbial community growing on the herbicide Dalapon.
    Senior E; Bull AT; Slater JH
    Nature; 1976 Oct; 263(5577):476-9. PubMed ID: 972691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The degradation of undecane by a marine bacterium].
    Killinger A
    Arch Mikrobiol; 1970; 73(2):160-76. PubMed ID: 5487432
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.