These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 5573355)

  • 41. Purification and properties of a novel quizalofop-p-ethyl-hydrolyzing esterase involved in quizalofop-p-ethyl degradation by Pseudomonas sp. J-2.
    Zhang H; Li M; Li J; Wang G; Liu Y
    Microb Cell Fact; 2017 May; 16(1):80. PubMed ID: 28490371
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design of an enzymatic hybrid system: a useful strategy for the biosynthesis of benzylpenicillin in vitro.
    Martínez-Blanco H; Reglero A; Martín-Villacorta J; Luengo JM
    FEMS Microbiol Lett; 1990 Oct; 60(1-2):113-6. PubMed ID: 2178138
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purification and properties of formylglutamate amidohydrolase from Pseudomonas putida.
    Hu L; Mulfinger LM; Phillips AT
    J Bacteriol; 1987 Oct; 169(10):4696-702. PubMed ID: 3308850
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation and characterization of a transducing phage for Pseudomonas putida strain PMBL-1.
    Amelink-Koutstaal JM; van de Putte P
    Proc K Ned Akad Wet C; 1971; 74(2):153-7. PubMed ID: 4251736
    [No Abstract]   [Full Text] [Related]  

  • 45. [Peripheral metabolism of Pseudomonal putida transconjugants degrading chloro- and methylaromatic compounds].
    Mal'tseva OV; Golovleva LA
    Mikrobiologiia; 1990; 59(1):163-5. PubMed ID: 2374510
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Oxidation characteristics of the aromatic acids formed in DDT breakdown by a Pseudomonas aeruginosa culture].
    Pertsova RN; Baskunov BP; Golovleva LA
    Mikrobiologiia; 1982; 51(2):275-80. PubMed ID: 6806578
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacterial DL-2-haloacid dehalogenase from Pseudomonas sp. strain 113: gene cloning and structural comparison with D- and L-2-haloacid dehalogenases.
    Nardi-Dei V; Kurihara T; Park C; Esaki N; Soda K
    J Bacteriol; 1997 Jul; 179(13):4232-8. PubMed ID: 9209038
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Enzyme induction and metabolic regulation in mycobacteria. II. Utilization of glutamic acid and propionic acid in the proliferative phase of M. smegmatis].
    Sehrt I; Iwainsky H
    Zentralbl Bakteriol Orig; 1969; 211(2):225-33. PubMed ID: 5386333
    [No Abstract]   [Full Text] [Related]  

  • 49. Oxidation and oxygenation of L-amino acids catalyzed by a L-phenylalanine oxidase (deaminating and decarboxylating) from Pseudomonas sp. P-501.
    Koyama H
    J Biochem; 1984 Aug; 96(2):421-7. PubMed ID: 6501250
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Growth phase dependent substrate utilization by Pseudomonas strain PH1.
    Narde GK; Purohit HJ
    Prikl Biokhim Mikrobiol; 2002; 38(6):653-7. PubMed ID: 12449795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation and characterization of a diverse group of phenylacetic acid degrading microorganisms from pristine soil.
    O'Connor KE; O'Leary NP; Marchesi JR; Dobson AD; Duetz W
    Chemosphere; 2005 Nov; 61(7):965-73. PubMed ID: 15869782
    [TBL] [Abstract][Full Text] [Related]  

  • 52. THE MICROBIAL METABOLISM OF CINNAMIC ACID.
    BLAKLEY ER; SIMPSON FJ
    Can J Microbiol; 1964 Apr; 10():175-85. PubMed ID: 14171642
    [No Abstract]   [Full Text] [Related]  

  • 53. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differentiation between Pseudomonas testosteroni and P. acidovorans by gas chromatography.
    Brooks JB; Weaver RE; Tatum HW; Billingsley SA
    Can J Microbiol; 1972 Sep; 18(9):1477-82. PubMed ID: 4561033
    [No Abstract]   [Full Text] [Related]  

  • 55. Phenylacetic acid production in dominant and non-dominant vervet monkeys.
    Elsworth JD; Redmond DE; Ruthven CR; Sandler M
    Life Sci; 1985 Nov; 37(18):1727-30. PubMed ID: 4058249
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The microbial production and some characteristics of delta-carboxymethyl-alpha-hydroxymuconic semialdehyde.
    Blakley ER; Halvorson H; Kurz W
    Can J Microbiol; 1967 Feb; 13(2):159-65. PubMed ID: 6035533
    [No Abstract]   [Full Text] [Related]  

  • 57. Comparison of oxygen demand rates and oxygen utilization rates.
    Arthur RM
    Nature; 1966 Jan; 209(5018):104-5. PubMed ID: 5925323
    [No Abstract]   [Full Text] [Related]  

  • 58. [Biosynthesis of o-hydroxyphenylacetic acid].
    Nakajima N
    Nihon Ika Daigaku Zasshi; 1965; 32(6):231-4. PubMed ID: 5886397
    [No Abstract]   [Full Text] [Related]  

  • 59. The breakdown of atropine by bacteria.
    KEDZIA W; LEWON J; WISNIEWSKI T
    J Pharm Pharmacol; 1961 Oct; 13():614-6. PubMed ID: 14454764
    [No Abstract]   [Full Text] [Related]  

  • 60. Enzymology of oxidation of tropic acid to phenylacetic acid in metabolism of atropine by Pseudomonas sp. strain AT3.
    Long MT; Bartholomew BA; Smith MJ; Trudgill PW; Hopper DJ
    J Bacteriol; 1997 Feb; 179(4):1044-50. PubMed ID: 9023182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.