These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
54 related articles for article (PubMed ID: 557344)
1. On the relative location of the inhibitor-and calcium-binding sites in bovine trypsin as determined by nuclear magnetic resonance. Possible ambiguities in paramagnetic probe mapping studies. Epstein M; Reuben J Biochim Biophys Acta; 1977 Mar; 481(1):164-70. PubMed ID: 557344 [TBL] [Abstract][Full Text] [Related]
2. The location of the calcium ion binding site in bovine alpha-trypsin and beta-trypsin using lanthanide ion probes. Abbott F; Gomez JE; Birnbaum ER; Darnall DW Biochemistry; 1975 Nov; 14(22):4935-43. PubMed ID: 1237314 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence energy-transfer measurements between the calcium binding site and the specificity pocket of bovine trypsin using lanthanide probes. Darnall DW; Abbott F; Gomez JE; Birnbaum ER Biochemistry; 1976 Nov; 15(23):5017-23. PubMed ID: 1032992 [TBL] [Abstract][Full Text] [Related]
4. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes. Nozawa M; Tanizawa K; Kanaoka Y J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567 [TBL] [Abstract][Full Text] [Related]
5. Multinuclear magnetic resonance studies on the calcium (II) binding site in trypsin, chymotrypsin, and subtilisin. Adebodun F; Jordan F Biochemistry; 1989 Sep; 28(19):7524-31. PubMed ID: 2692702 [TBL] [Abstract][Full Text] [Related]
6. Zymogen activation: effect of peptides sequentially related to the bovine beta-trypsin N-terminus on Kazal inhibitor and benzamidine binding to bovine trypsinogen. Ascenzi P; Coletta M; Amiconi G; Bolognesi M; Guarneri M; Menegatti E J Mol Recognit; 1988 Jun; 1(3):130-7. PubMed ID: 3273224 [TBL] [Abstract][Full Text] [Related]
7. Behavior of trypsin and related enzymes toward amidinophenyl esters. Nozawa M; Tanizawa K; Kanaoka Y; Moriya H J Pharmacobiodyn; 1981 Aug; 4(8):559-64. PubMed ID: 6457906 [TBL] [Abstract][Full Text] [Related]
8. Calcium binding site of trypsin as probed by lanthanides. Epstein M; Reuben J; Levitzki A Biochemistry; 1977 May; 16(11):2449-57. PubMed ID: 16646 [No Abstract] [Full Text] [Related]
9. The substituent effect on complex formation between alpha-trypsin and para-substituted benzamidinium ions: a thermodynamic study. Rogana E; Penha-Silva N; Mares-Guia M Braz J Med Biol Res; 1989; 22(10):1177-90. PubMed ID: 2638191 [TBL] [Abstract][Full Text] [Related]
10. A plausible identification of the secondary binding site in trypsin and trypsinogen. Andrade MH; Silva E; Mares-Guia M Braz J Med Biol Res; 1990; 23(12):1223-31. PubMed ID: 2136554 [TBL] [Abstract][Full Text] [Related]
11. Inverse substrates: novel synthetic substrates for trypsin and related enzymes. Tanizawa K; Nakayama H; Fujioka T; Nozawa M; Nakaona M; Kanaoka Y Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(1):61-6. PubMed ID: 6177609 [TBL] [Abstract][Full Text] [Related]
12. Gadolinium (3) as a paramagnetic probe for proton relaxation studies of biological macromolecules. Binding to bovine serum albumin. Reuben J Biochemistry; 1971 Jul; 10(15):2834-8. PubMed ID: 4329808 [No Abstract] [Full Text] [Related]
13. Nitrotyrosine chelation of nuclear magnetic resonance shift probes in proteins: application to bovine pancreatic trypsin inhibitor. Marinetti TD; Snyder GH; Sykes BD Biochemistry; 1977 Feb; 16(4):647-53. PubMed ID: 556950 [TBL] [Abstract][Full Text] [Related]
14. NMR studies of BPTI aggregation by using paramagnetic relaxation reagents. Bernini A; Spiga O; Ciutti A; Venditti V; Prischi F; Governatori M; Bracci L; Lelli B; Pileri S; Botta M; Barge A; Laschi F; Niccolai N Biochim Biophys Acta; 2006 May; 1764(5):856-62. PubMed ID: 16627014 [TBL] [Abstract][Full Text] [Related]
15. The location of the lanthanide ion binding site on bovine trypsin. Abbott F; Darnall DW; Birnbaum ER Biochem Biophys Res Commun; 1975 Jul; 65(1):241-7. PubMed ID: 1170862 [No Abstract] [Full Text] [Related]
16. Characterization of calcium-binding sites in the kidney stone inhibitor glycoprotein nephrocalcin with vanadyl ions: electron paramagnetic resonance and electron nuclear double resonance spectroscopy. Mustafi D; Nakagawa Y Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11323-7. PubMed ID: 7972057 [TBL] [Abstract][Full Text] [Related]
17. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase. Petersen RL; Gupta BK Biophys J; 1979 Jul; 27(1):1-14. PubMed ID: 233578 [TBL] [Abstract][Full Text] [Related]
18. Properties of the His57-Asp102 dyad of rat trypsin D189S in the zymogen, activated enzyme, and alpha1-proteinase inhibitor complexed forms. Kaslik G; Westler WM; Gráf L; Markley JL Arch Biochem Biophys; 1999 Feb; 362(2):254-64. PubMed ID: 9989934 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Ca(2+)-binding sites in the kidney stone inhibitor glycoprotein nephrocalcin using vanadyl ions: different metal binding properties in strong and weak inhibitor proteins revealed by EPR and ENDOR. Mustafi D; Nakagawa Y Biochemistry; 1996 Nov; 35(47):14703-9. PubMed ID: 8942630 [TBL] [Abstract][Full Text] [Related]
20. Oxygen and sulfur esters of "inverse substrates": different responses of amidinophenol and amidinothiophenol in the activation of the rate of tryptic hydrolysis of the inverse esters. Tanizawa K; Kanaoka Y J Biochem; 1985 Jan; 97(1):275-80. PubMed ID: 3997793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]