These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 5573738)

  • 21. The formation of a quencher of the fluorescence of chromatophores from photosynthetic bacteria.
    Mayne BC
    Biochim Biophys Acta; 1965 Sep; 109(1):59-66. PubMed ID: 5864031
    [No Abstract]   [Full Text] [Related]  

  • 22. Observations on the rhodanese activity of Desulfotomaculum nigrificans.
    Burton CP; Akagi JM
    J Bacteriol; 1971 Jul; 107(1):375-6. PubMed ID: 5563874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orthophosphate requirement for the formation of phosphoenolpyruvate from pyruvate by enzyme preparations from photosynthetic bacteria.
    Buchanan BB
    J Bacteriol; 1974 Sep; 119(3):1066-8. PubMed ID: 4212219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytochrome b and photosynthetic sulfur bacteria.
    Knaff DB; Buchanan BB
    Biochim Biophys Acta; 1975 Mar; 376(3):549-60. PubMed ID: 1125222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nicotinamide adenine dinucleotide photoreduction with Chromatium and Rhodospirillum rubrum chromatophores.
    Hinkson JW
    Arch Biochem Biophys; 1965 Dec; 112(3):478-87. PubMed ID: 4286495
    [No Abstract]   [Full Text] [Related]  

  • 26. Specificity of the transhydrogenase factor for chromatophores of Rhodopseudomonas spheroides and Rhodospirillum rubrum.
    Konings AW; Guillory RJ
    Biochim Biophys Acta; 1972 Nov; 283(2):334-8. PubMed ID: 4267407
    [No Abstract]   [Full Text] [Related]  

  • 27. The oxidation and reduction of pyridine nucleotides by Rhodopseudomonas spheroides and Chlorobium thiosulfatophilum.
    Jones OT; Whale FR
    Arch Mikrobiol; 1970; 72(1):48-59. PubMed ID: 4317093
    [No Abstract]   [Full Text] [Related]  

  • 28. Coupling factors ATPases from photosynthetic bacteria.
    Melandri BA; Melandri AB
    J Bioenerg; 1976 Apr; 8(2):109-19. PubMed ID: 134033
    [No Abstract]   [Full Text] [Related]  

  • 29. Generation of reducing power in bacterial photosynthesis. Rhodopseudomonas palustris.
    Knobloch K; Eley JH; Aleem MI
    Biochem Biophys Res Commun; 1971 May; 43(4):834-9. PubMed ID: 4327489
    [No Abstract]   [Full Text] [Related]  

  • 30. [Comparative study of light-harvesting complexes of purple photosynthetic bacteria Chromatium minutissimum and Rhodopseudomonas palustris].
    Erokhin IuE; Chugunov VA; Makhneva ZK; Agrikova IM; Shanturova TV
    Biokhimiia; 1977 Oct; 42(10):1817-24. PubMed ID: 922068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dichroism of bacteriochlorophyll in chromatophores of photosynthetic bacteria.
    Morita S; Miyazaki T
    J Biochem; 1978 Jun; 83(6):1715-20. PubMed ID: 97281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic properties and regulatory diversity of inorganic pyrophosphatases from photosynthetic bacteria.
    Klemme JH; Klemme B; Gest H
    J Bacteriol; 1971 Dec; 108(3):1122-8. PubMed ID: 4333319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Energy transfer in solid-state and membrane systems in photosynthesis].
    Nishimura M
    Seikagaku; 1968 Aug; 40(8):347-56. PubMed ID: 4883341
    [No Abstract]   [Full Text] [Related]  

  • 34. Bacterial cytochromes. II. Functional aspects.
    Horio T; Kamen MD
    Annu Rev Microbiol; 1970; 24():399-428. PubMed ID: 4927136
    [No Abstract]   [Full Text] [Related]  

  • 35. Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions.
    Russell NJ; Harwood JL
    Biochem J; 1979 Aug; 181(2):339-45. PubMed ID: 115463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Formation of catalase by photosynthesizing bacteria].
    Uspenskaia VE; Rodova NA; Kondrat'eva EN
    Mikrobiologiia; 1971; 40(3):455-60. PubMed ID: 5567626
    [No Abstract]   [Full Text] [Related]  

  • 37. Electron paramagnetic resonance studies of ferric cytochrome c' from photosynthetic bacteria.
    Fujii S; Yoshimura T; Kamada H; Yamaguchi K; Suzuki S; Shidara S; Takakuwa S
    Biochim Biophys Acta; 1995 Sep; 1251(2):161-9. PubMed ID: 7669805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Bacteriochlorophyll fluorescence changes related to the bacteriopheophytin photoreduction in the chromatophores of purple sulfur bacteria].
    Klimov VV; Shuvalov VA; Krakhmaleva IN; Karapetian NV; KrasiovskiÄ­ AA
    Biokhimiia; 1976 Aug; 41(8):1435-41. PubMed ID: 1024595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different pathways for fructose and glucose utilization in Rhodopseudomonas capsulata and demonstration of 1-phosphofructokinase in phototrophic bacteria.
    Conrad R; Schlegel HG
    Biochim Biophys Acta; 1974 Jul; 358(1):221-5. PubMed ID: 4277436
    [No Abstract]   [Full Text] [Related]  

  • 40. A soluble factor related to the energy-linked transhydrogenase reaction of Rhodospirillum rubrum chromatophores.
    Fisher RR; Guillory RJ
    J Biol Chem; 1969 Feb; 244(3):1078-9. PubMed ID: 4305916
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.