These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 5573738)

  • 41. X-ray diffraction studies on chromatophore membrane from photosynthetic bacteria. III. Basic structure of the photosynthetic unit and its relation to other bacteriochlorophyll forms.
    Nakamoto S; Kataoka M; Ueki T
    J Biochem; 1984 Dec; 96(6):1831-9. PubMed ID: 6442292
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photooxidation of cytochromes in reaction center preparations from Chromatium and Rhodopseudomonas viridis.
    Case GD; Parson WW; Thornber JP
    Biochim Biophys Acta; 1970 Nov; 223(1):122-8. PubMed ID: 5484048
    [No Abstract]   [Full Text] [Related]  

  • 43. rdlA, a new gene encoding a rhodanese-like protein in Halanaerobium congolense and other thiosulfate-reducing anaerobes.
    Ravot G; Casalot L; Ollivier B; Loison G; Magot M
    Res Microbiol; 2005 Dec; 156(10):1031-8. PubMed ID: 16085393
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Succinate dehydrogenase in Rhodopseudomonas sphaeroides: subunit composition and immunocross-reactivity with other related bacteria.
    Barassi CA; Kranz RG; Gennis RB
    J Bacteriol; 1985 Aug; 163(2):778-82. PubMed ID: 3874866
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Histochemical localization of rhodanese activity in rat liver and skeletal muscle.
    Devlin DJ; Mills JW; Smith RP
    Toxicol Appl Pharmacol; 1989 Feb; 97(2):247-55. PubMed ID: 2922757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy-linked reactions in photosynthetic bacteria. I. Succinatelinked ATP-driven NAD reduction by Rhodospirillum rubrum chromatophores.
    Keister DL; Yike NJ
    Arch Biochem Biophys; 1967 Aug; 121(2):415-22. PubMed ID: 4293589
    [No Abstract]   [Full Text] [Related]  

  • 47. Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria.
    Meyer J; Kelley BC; Vignais PM
    Biochimie; 1978; 60(3):245-60. PubMed ID: 96875
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sulfur metabolism in Thiorhodaceae. V. Enzymes of sulfur metabolism in Thiocapsa floridana and Chromatium species.
    Thiele HH
    Antonie Van Leeuwenhoek; 1968; 34(3):350-6. PubMed ID: 5305788
    [No Abstract]   [Full Text] [Related]  

  • 49. Fast stages of photoelectric processes in biological membranes. III. Bacterial photosynthetic redox system.
    Drachev LA; Semenov AYu ; Skulachev VP; Smirnova IA; Chamorovsky SK; Kononenko AA; Rubin AB; Uspenskaya NYa
    Eur J Biochem; 1981 Jul; 117(3):483-9. PubMed ID: 6793358
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Differential spectrophotometry of photosynthesizing objects].
    Borisov AIu; IvanovskiÄ­ RN; Samuilov VD
    Biofizika; 1969; 14(4):676-83. PubMed ID: 5396308
    [No Abstract]   [Full Text] [Related]  

  • 51. Immunological studies on function of NADH: quinone oxidoreductase in electron transport system of chromatophores from Rhodospirillum rubrum.
    Nisimoto Y; Yamashita J; Horio T
    J Biochem; 1973 Mar; 73(3):523-8. PubMed ID: 4146750
    [No Abstract]   [Full Text] [Related]  

  • 52. Immunochemical studies on function of NADH: hemeprotein oxidoreductase in electron transport system of chromatophores from Rhodospirillum rubrum.
    Nisimoto Y; Yamashita J; Horio T
    J Biochem; 1973 Mar; 73(3):515-21. PubMed ID: 4146749
    [No Abstract]   [Full Text] [Related]  

  • 53. Hybridization of cloned Rhodopseudomonas capsulata photosynthesis genes with DNA from other photosynthetic bacteria.
    Beatty JT; Cohen SN
    J Bacteriol; 1983 Jun; 154(3):1440-5. PubMed ID: 6406432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for the photochemical reduction on coenzyme Q in chromatophores of photosynthetic bacteria.
    CLAYTON RK
    Biochem Biophys Res Commun; 1962 Sep; 9():49-53. PubMed ID: 14021651
    [No Abstract]   [Full Text] [Related]  

  • 55. Selective reactivity of rhodanese sulfhydryl groups with 5,5'-dithio-bis(2-nitrobenzoic acid).
    Pensa B; Costa M; Pecci L; Cannella C; Cavallini D
    Biochim Biophys Acta; 1977 Oct; 484(2):368-74. PubMed ID: 911854
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of glycolipids from some photosynthetic bacteria.
    Constantopoulos G; Bloch K
    J Bacteriol; 1967 Jun; 93(6):1788-93. PubMed ID: 6025299
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative study of the circular dichroism spectra of reaction centers from several photosynthetic bacteria.
    Philipson KD; Sauer K
    Biochemistry; 1973 Jan; 12(3):535-9. PubMed ID: 4630407
    [No Abstract]   [Full Text] [Related]  

  • 58. ABSORPTION CHANGES IN BACTERIAL CHROMATOPHORES.
    KUNTZ ID; LOACH PA; CALVIN M
    Biophys J; 1964 May; 4(3):227-49. PubMed ID: 14185583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photoreduction of the long wavelength bacteriopheophytin in reaction centers and chromatophores of the photosynthetic bacterium Chromatium vinosum.
    van Grondelle R; Romijn JC; Holmes NG
    FEBS Lett; 1976 Dec; 72(1):187-92. PubMed ID: 1001464
    [No Abstract]   [Full Text] [Related]  

  • 60. Identification of putative sulfurtransferase genes in the extremophilic Acidithiobacillus ferrooxidans ATCC 23270 genome: structural and functional characterization of the proteins.
    Acosta M; Beard S; Ponce J; Vera M; Mobarec JC; Jerez CA
    OMICS; 2005; 9(1):13-29. PubMed ID: 15805776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.