These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 5575750)

  • 1. Sensitivity of Bacillus thuringiensis var. thuringiensis to various insecticides and herbicides.
    Dougherty EM; Reichelderfer CF; Faust RM
    J Invertebr Pathol; 1971 Mar; 17(2):292-3. PubMed ID: 5575750
    [No Abstract]   [Full Text] [Related]  

  • 2. Do herbicide treatments reduce the sensitivity of mosquito larvae to insecticides?
    Boyer S; Sérandour J; Lempérière G; Raveton M; Ravanel P
    Chemosphere; 2006 Oct; 65(4):721-4. PubMed ID: 16574189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Levels of sensitivity of Anopheles gambiae s.l. to traditional insecticides and evaluation of the efficiency of Bacillus thuringiensis var. israelensis and Bacillus sphaericus].
    Majori G; Sabatinelli G; Rossi P; Romi R; Villani F
    Ann Ist Super Sanita; 1986; 22(1):197-200. PubMed ID: 3752796
    [No Abstract]   [Full Text] [Related]  

  • 4. Compatibility of Bacillus thuringiensis var. thuringiensis and chemical insecticides. 1. Effect of insecticide doses on bacterial replication rate.
    Sutter GR; Abrahamson MD; Hamilton EW; Vick ID
    J Econ Entomol; 1971 Dec; 64(6):1348-50. PubMed ID: 20333834
    [No Abstract]   [Full Text] [Related]  

  • 5. Emergence of multi drug resistance among soil bacteria exposing to insecticides.
    Rangasamy K; Athiappan M; Devarajan N; Parray JA
    Microb Pathog; 2017 Apr; 105():153-165. PubMed ID: 28192223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of IPC, CIPC, Sevin and Zectran on Bacillus subtilis.
    DeGiovanni-Donnelly R; Kolbye SM; Greeves PD
    Experientia; 1968 Jan; 24(1):80-1. PubMed ID: 4966112
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of pesticides on growth of rhizobia and their host plants during symbiosis.
    Madhavi B; Anand CS; Bharathi A; Polasa H
    Biomed Environ Sci; 1993 Mar; 6(1):89-94. PubMed ID: 8476538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of herbicides on soil microflora. IV. The action of herbicides on soil microorganisms.
    Balicka N; Sobieszczański J; Niewiadoma T
    Acta Microbiol Pol B; 1969; 1(1):11-4. PubMed ID: 5370438
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparison of commercially produced Bacillus thuringiensis var. thuringiensis with two bioassay techniques based on toxicity units.
    Chauthani AR; Snideman M; Rehnborg CS
    J Econ Entomol; 1971 Oct; 64(5):1291-3. PubMed ID: 5122351
    [No Abstract]   [Full Text] [Related]  

  • 10. [Evaluation of larvicidal effects of Bacillus thuringiensis var. israelensis (serotype H-14) and Bacillus sphaericus preparations and the susceptibility of adult mosquitoes to malarial plasmodia].
    Ganushkina LA
    Med Parazitol (Mosk); 1987; (1):10-3. PubMed ID: 3553885
    [No Abstract]   [Full Text] [Related]  

  • 11. A micro-plating method for soil molds and its use to detect some effects of certain insecticides and herbicides.
    ROBERTS JE; BOLLEN WB
    Appl Microbiol; 1955 May; 3(3):190-4. PubMed ID: 14377389
    [No Abstract]   [Full Text] [Related]  

  • 12. Screening of pesticides for mutagenic potential using Salmonella typhimurium mutants.
    Marshall TC; Dorough HW; Swim HE
    J Agric Food Chem; 1976; 24(3):560-3. PubMed ID: 818141
    [No Abstract]   [Full Text] [Related]  

  • 13. [THE SENSITIVITY OF PHYTOPATHOGENIC BACTERIA TO STREPTOMYCIN UNDER THE INFLUENCE OF PESTICIDES].
    Buletsa NM; Butsenko LM; Pasichnyk LA; Patyka VP
    Mikrobiol Z; 2015; 77(6):62-9. PubMed ID: 26829841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The initial activity and persistance of an experimental larvicide with a base of Bacillus thuringiensis var. israelensis and a commercial preparation containing the organophosphorus insecticide temephos].
    Pussemier L; De Borger R
    J Environ Sci Health B; 1984 Aug; 19(6):539-54. PubMed ID: 6208235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus thuringiensis produces the lipopeptide thumolycin to antagonize microbes and nematodes.
    Zheng D; Zeng Z; Xue B; Deng Y; Sun M; Tang YJ; Ruan L
    Microbiol Res; 2018 Oct; 215():22-28. PubMed ID: 30172305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-efficacy of chitinolytic Bacillus thuringiensis isolates native to northwestern Indian Himalayas and their synergistic toxicity with selected insecticides.
    Subbanna ARNS; Chandrashekara C; Stanley J; Mishra KK; Mishra PK; Pattanayak A
    Pestic Biochem Physiol; 2019 Jul; 158():166-174. PubMed ID: 31378353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial control of mosquitoes with special emphasis on bacterial control.
    Bhattacharya PR
    Indian J Malariol; 1998 Dec; 35(4):206-24. PubMed ID: 10748561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of pesticides on Bacillus thuringiensis strains under controlled conditions].
    Salerno C; Dias S; Sagardoy M
    Rev Argent Microbiol; 1999; 31(2):58-64. PubMed ID: 10425660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of Bacillus thuringiensis Berliner to two antibiotics and a sulphanilamide.
    Narayanan K; Jayaraj S; Subramaniam TR
    Hindustan Antibiot Bull; 1972; 15(1):14-5. PubMed ID: 4665126
    [No Abstract]   [Full Text] [Related]  

  • 20. New perspectives on Mega plasmid sequence (poh1) in Bacillus thuringiensis ATCC 10792 harbouring antimicrobial, insecticidal and antibiotic resistance genes.
    Chelliah R; Wei S; Park BJ; Park JH; Park YS; Kim SH; Jin YG; Oh DH
    Microb Pathog; 2019 Jan; 126():14-18. PubMed ID: 30326263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.