These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 5576774)
1. Model for bend propagation in flagella. Lubliner J; Blum JJ J Theor Biol; 1971 Apr; 31(1):1-24. PubMed ID: 5576774 [No Abstract] [Full Text] [Related]
2. Analysis of bend initiation in cilia according to a sliding filament model. Lubliner J; Blum JJ J Theor Biol; 1977 Nov; 69(1):87-99. PubMed ID: 592873 [No Abstract] [Full Text] [Related]
3. Models for oscillation and bend propagation by flagella. Brokaw CJ Symp Soc Exp Biol; 1982; 35():313-38. PubMed ID: 6223398 [TBL] [Abstract][Full Text] [Related]
4. Flagella bending affects macroscopic properties of bacterial suspensions. Potomkin M; Tournus M; Berlyand LV; Aranson IS J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28566507 [TBL] [Abstract][Full Text] [Related]
5. Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified. Brokaw CJ Biophys J; 1985 Oct; 48(4):633-42. PubMed ID: 3840393 [TBL] [Abstract][Full Text] [Related]
6. Mechanics of flagellar motion with an application to a conical spiral flagellate. Keller SR J Theor Biol; 1977 Sep; 68(1):73-94. PubMed ID: 916707 [No Abstract] [Full Text] [Related]
7. Properties of an excitable dynein model for bend propagation in cilia and flagella. Murase M; Hines M; Blum JJ J Theor Biol; 1989 Aug; 139(3):413-30. PubMed ID: 2533309 [TBL] [Abstract][Full Text] [Related]
9. A model of flagellar movement based on cooperative dynamics of dynein-tubulin cross-bridges. Murase M; Shimizu H J Theor Biol; 1986 Apr; 119(4):409-33. PubMed ID: 2943943 [TBL] [Abstract][Full Text] [Related]
12. Progression of flagellar stages during artificially delayed motility initiation in sea urchin sperm. Ohmuro J; Mogami Y; Baba SA Zoolog Sci; 2004 Nov; 21(11):1099-108. PubMed ID: 15572861 [TBL] [Abstract][Full Text] [Related]
13. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Brokaw CJ Biophys J; 1972 May; 12(5):564-86. PubMed ID: 5030565 [TBL] [Abstract][Full Text] [Related]
14. Rotation of bacterial flagella as driven by cytomembrane streaming. Adam G J Theor Biol; 1977 Apr; 65(4):713-26. PubMed ID: 875400 [No Abstract] [Full Text] [Related]
15. Hydrodynamic analysis of non-uniform flagellar undulations. Holwill ME; Miles CA J Theor Biol; 1971 Apr; 31(1):25-42. PubMed ID: 5576775 [No Abstract] [Full Text] [Related]
16. Excitable dynein model with multiple active sites for large-amplitude oscillations and bend propagation in flagella. Murase M J Theor Biol; 1991 Mar; 149(2):181-202. PubMed ID: 1829494 [TBL] [Abstract][Full Text] [Related]
17. Bend propagation drives central pair rotation in Chlamydomonas reinhardtii flagella. Mitchell DR; Nakatsugawa M J Cell Biol; 2004 Aug; 166(5):709-15. PubMed ID: 15337779 [TBL] [Abstract][Full Text] [Related]
18. Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics. Brokaw CJ Cytoskeleton (Hoboken); 2014 Apr; 71(4):273-84. PubMed ID: 24574072 [TBL] [Abstract][Full Text] [Related]
19. Bend propagation in flagella. I. Derivation of equations of motion and their simulation. Hines M; Blum JJ Biophys J; 1978 Jul; 23(1):41-57. PubMed ID: 667306 [TBL] [Abstract][Full Text] [Related]
20. Bend propagation in flagella. II. Incorporation of dynein cross-bridge kinetics into the equations of motion. Hines M; Blum JJ Biophys J; 1979 Mar; 25(3):421-41. PubMed ID: 162447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]