These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 5577488)

  • 1. Volatile fatty acid concentrations and pH of llama and quanaco forestomach digesta.
    Vallenas A; Stevens CE
    Cornell Vet; 1971 Apr; 61(2):239-52. PubMed ID: 5577488
    [No Abstract]   [Full Text] [Related]  

  • 2. The rate of carbohydrate fermentation in the rumen.
    Sutton JD
    Proc Nutr Soc; 1971 May; 30(1):36-42. PubMed ID: 5090487
    [No Abstract]   [Full Text] [Related]  

  • 3. Physical form of the diet in relation to rumen fermentation.
    Thomson DJ
    Proc Nutr Soc; 1972 Sep; 31(2):127-34. PubMed ID: 4563286
    [No Abstract]   [Full Text] [Related]  

  • 4. Fermentation characteristics and microbial growth promoted by diets including two-phase olive cake in continuous fermenters.
    Moumen A; Yáñez-Ruiz DR; Martín-García I; Molina-Alcaide E
    J Anim Physiol Anim Nutr (Berl); 2008 Feb; 92(1):9-17. PubMed ID: 18184375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the variability of an in vitro rumen fermentation technique for estimating forage quality.
    Nelson BD; Ellzey HD; Montgomery C; Morgan EB
    J Dairy Sci; 1972 Mar; 55(3):358-66. PubMed ID: 5010386
    [No Abstract]   [Full Text] [Related]  

  • 6. Manipulation of ruminal fermentation. IV. Effect of altering ruminal pH on volatile fatty acid production.
    Esdale WJ; Satter LD
    J Dairy Sci; 1972 Jul; 55(7):964-70. PubMed ID: 5037009
    [No Abstract]   [Full Text] [Related]  

  • 7. Rumen odd and branched chain fatty acids in relation to in vitro rumen volatile fatty acid productions and dietary characteristics of incubated substrates.
    Vlaeminck B; Fievez V; van Laar H; Demeyer D
    J Anim Physiol Anim Nutr (Berl); 2004 Dec; 88(11-12):401-11. PubMed ID: 15584949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The disappearance of volatile fatty acids through the rumen wall.
    Aafjes JH
    Z Tierphysiol Tierernahr Futtermittelkd; 1967 Jan; 22(2):69-75. PubMed ID: 5621827
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of dietary n-6:n-3 fatty acid ratio on feed intake, digestibility, and fatty acid profiles of the ruminal contents, liver, and muscle of growing lambs.
    Kim SC; Adesogan AT; Badinga L; Staples CR
    J Anim Sci; 2007 Mar; 85(3):706-16. PubMed ID: 17121972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between thiamine concentration and fermentation patterns in the rumen fluid of dairy cows fed with graded concentrate levels.
    Tafaj M; Schollenberger M; Feofilowa J; Zebeli Q; Steingass H; Drochner W
    J Anim Physiol Anim Nutr (Berl); 2006 Aug; 90(7-8):335-43. PubMed ID: 16867079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH.
    Calsamiglia S; Cardozo PW; Ferret A; Bach A
    J Anim Sci; 2008 Mar; 86(3):702-11. PubMed ID: 18073289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of fat and feed level on fiber digestibility in vitro and in sacco and on volatile fatty acid proportions in the rumen.
    Weisbjerg MR; Børsting CF
    Acta Vet Scand Suppl; 1989; 86():137-9. PubMed ID: 2561434
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of supplemental fat source on nutrient digestion and ruminal fermentation in steers.
    Montgomery SP; Drouillard JS; Nagaraja TG; Titgemeyer EC; Sindt JJ
    J Anim Sci; 2008 Mar; 86(3):640-50. PubMed ID: 18156344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in ruminal lactate, volatile fatty acids, and pH from reconstitution of sorghum grain.
    Helm RE; Lane GT; Leighton RE
    J Dairy Sci; 1972 Jul; 55(7):979-82. PubMed ID: 5037011
    [No Abstract]   [Full Text] [Related]  

  • 15. Rumen fermentation and degradability in buffalo and cattle using the in vitro gas production technique.
    Calabrò S; Moniello G; Piccolo V; Bovera F; Infascelli F; Tudisco R; Cutrignelli MI
    J Anim Physiol Anim Nutr (Berl); 2008 Jun; 92(3):356-62. PubMed ID: 18477317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Gas chromatographic determination of volatile fatty acids and their production in the rumen].
    Giesecke D
    Z Tierphysiol Tierernahr Futtermittelkd; 1967 Jul; 22(6):354-64. PubMed ID: 5633567
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of environmental temperature on ruminal volatile fatty acid levels with controlled feed intake.
    Kelley RO; Martz FA; Johnson HD
    J Dairy Sci; 1967 Apr; 50(4):531-3. PubMed ID: 6068418
    [No Abstract]   [Full Text] [Related]  

  • 18. Supplemental algal meal alters the ruminal trans-18:1 fatty acid and conjugated linoleic acid composition in cattle.
    Or-Rashid MM; Kramer JK; Wood MA; McBride BW
    J Anim Sci; 2008 Jan; 86(1):187-96. PubMed ID: 17940158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estrogenic activity of fermented alfalfa.
    Jorgensen NA; Freymiller DD
    J Dairy Sci; 1972 Jan; 55(1):80-2. PubMed ID: 5009529
    [No Abstract]   [Full Text] [Related]  

  • 20. Relation of ruminal parakeratosis development to volatile fatty acid absorption.
    Hinders RG; Owen FG
    J Dairy Sci; 1965 Aug; 48(8):1069-73. PubMed ID: 5891234
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.