These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 558200)

  • 1. Development of spike potentials in skeletal muscle cells differentiated in vitro from chick embryo.
    Kano M; Yamamoto M
    J Cell Physiol; 1977 Mar; 90(3):439-44. PubMed ID: 558200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurotrophic effect of nerve extract on development of tetrodotoxin-sensitive spike potential in skeletal muscle cells in culture.
    Kano M; Suzuki N; Ojima H
    J Cell Physiol; 1979 Jun; 99(3):327-31. PubMed ID: 457794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrodotoxin-resistant electric activity in chick skeletal muscle cells differentiated in vitro.
    Kano M; Shimada Y
    J Cell Physiol; 1973 Feb; 81(1):85-9. PubMed ID: 4734418
    [No Abstract]   [Full Text] [Related]  

  • 4. Development of excitability in embryonic chick skeletal muscle cells.
    Kano M
    J Cell Physiol; 1975 Dec; 86(3 Pt 1):503-10. PubMed ID: 1202030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrogenesis of embryonic chick skeletal muscle cells differentiated in vitro.
    Kano M; Shimada Y; Ishikawa K
    J Cell Physiol; 1972 Jun; 79(3):363-6. PubMed ID: 5064752
    [No Abstract]   [Full Text] [Related]  

  • 6. Tunicamycin reduces Na(+)-K(+)-pump expression in cultured skeletal muscle.
    Alboim SV; Bak A; Sampson SR
    J Cell Physiol; 1992 Mar; 150(3):640-6. PubMed ID: 1311332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the non-equivalence of skeletal muscle satellite cells and embryonic myoblasts.
    Chevallier A; Pautou MP; Harris AJ; Kieny M
    Arch Anat Microsc Morphol Exp; 1986-1987; 75(3):161-6. PubMed ID: 3631956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centrioles are lost as embryonic myoblasts fuse into myotubes in vitro.
    Connolly JA; Kiosses BW; Kalnins VI
    Eur J Cell Biol; 1986 Jan; 39(2):341-5. PubMed ID: 3514220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane electrical characteristics of cultured human skeletal muscle cells.
    Iannaccone ST; Li KX; Sperelakis N
    J Cell Physiol; 1987 Nov; 133(2):409-13. PubMed ID: 3680398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and cellular localization of glucose transporters (GLUT1, GLUT3, GLUT4) during differentiation of myogenic cells isolated from rat foetuses.
    Guillet-Deniau I; Leturque A; Girard J
    J Cell Sci; 1994 Mar; 107 ( Pt 3)():487-96. PubMed ID: 8006068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of K(Ca) channels and stretch-activated channels in calcium influx, triggering membrane fusion of chick embryonic myoblasts.
    Shin KS; Park JY; Ha DB; Chung CH; Kang MS
    Dev Biol; 1996 Apr; 175(1):14-23. PubMed ID: 8608860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The insulin signal initiating cellular differentiation is preserved by chick embryo myoblasts incubated at 2 degrees C.
    Reiss K; Kajstura J; Korohoda W
    Eur J Cell Biol; 1990 Oct; 53(1):42-7. PubMed ID: 2076707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myogenesis in adult mammalian skeletal muscle in vitro.
    Nag AC; Foster JD
    J Anat; 1981 Jan; 132(Pt 1):1-18. PubMed ID: 7275784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface labeling studies of normal and dystrophic myogenic cells in culture.
    Schimmel SD; Goff R
    Muscle Nerve; 1980; 3(5):417-22. PubMed ID: 7421875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium and calcium components of the action potential in a developing skeletal muscle cell line.
    Kidokoro Y
    J Physiol; 1975 Jan; 244(1):145-59. PubMed ID: 1168257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physiological study of chick myotubes grown in tissue culture.
    Harris JB; Marshall MW; Wilson P
    J Physiol; 1973 Mar; 229(3):751-66. PubMed ID: 4735059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental changes of membrane electrical properties in a rat skeletal muscle cell line.
    Kidokoro Y
    J Physiol; 1975 Jan; 244(1):129-43. PubMed ID: 1168256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological properties of the membrane and acetylcholine receptor in developing rat and chick myotubes.
    Ritchie AK; Fambrough DM
    J Gen Physiol; 1975 Sep; 66(3):327-55. PubMed ID: 1176950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition by alpha-amanitin of development of tetrodotoxin-sensitive spike induced by brain extract in cultured chick skeletal muscle cells.
    Kano M; Suzuki N
    Brain Res; 1982 Apr; 255(4):674-8. PubMed ID: 6280809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotrophic substance develops tetrodotoxin-sensitive action potential and increases curare-sensitivity of acetylcholine response in cultured rat myotubes.
    Kuromi H; Gonoi T; Hasegawa S
    Brain Res; 1981 Jun; 227(3):369-79. PubMed ID: 7260644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.