These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 5582751)

  • 1. The effect of cyanoethylation on codon recognition of yeast tRNA containing inosine.
    Yoshida M; Furuichi Y; Ukita T; Kaziro Y
    Biochim Biophys Acta; 1967 Nov; 149(1):308-10. PubMed ID: 5582751
    [No Abstract]   [Full Text] [Related]  

  • 2. The modification of nucleosides and nucleotides. IX. Inactivation of coding response of yeast tRNA containing inosine residue by cyanoethylation.
    Yoshida M; Furuichi Y; Kaziro Y; Ukita T
    Biochim Biophys Acta; 1968 Oct; 166(3):636-45. PubMed ID: 4881143
    [No Abstract]   [Full Text] [Related]  

  • 3. The modification of nucleosides and nucleotides. X. Evidence for the important role of inosine residue in codon recognition of yeast alanine tRNA.
    Yoshida M; Kaziro Y; Ukita T
    Biochim Biophys Acta; 1968 Oct; 166(3):646-55. PubMed ID: 4301909
    [No Abstract]   [Full Text] [Related]  

  • 4. Modification of nucleosides and nucleotides. VII. Selective cyanoethylation of inosine and pseudouridine in yeast transfer ribonucleic acid.
    Yoshida M; Ukita T
    Biochim Biophys Acta; 1968 May; 157(3):455-65. PubMed ID: 5665898
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of trinucleoside diphosphates containing inosine at the 3'-end upon the binding of aminoacyl-tRNA to ribosomes.
    Sekiya T; Yoshida M; Ukita T
    Biochim Biophys Acta; 1967 Dec; 149(2):610-2. PubMed ID: 4866443
    [No Abstract]   [Full Text] [Related]  

  • 6. Pseudouridine residues resistant to cyanoethylation in yeast transfer ribonucleic acid.
    Yoshida M; Ukita T
    Biochim Biophys Acta; 1966 Jul; 123(1):214-6. PubMed ID: 5964045
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of some triribonucleoside diphosphates containing inosine on the binding of [14C]aminoacyl-tRNA to ribosomes.
    Grünberger D; Holý A; Sorm F
    Biochim Biophys Acta; 1967 Nov; 149(1):246-52. PubMed ID: 4867551
    [No Abstract]   [Full Text] [Related]  

  • 8. THE CHEMICAL NATURE OF THE S-RNA-POLYPEPTIDE COMPLEX.
    BRETSCHER MS
    J Mol Biol; 1963 Oct; 7():446-9. PubMed ID: 14066620
    [No Abstract]   [Full Text] [Related]  

  • 9. Cytokinin activity in tRNA-Phe.
    Hecht SM; Bock RM; Leonard NJ; Schmitz RY
    Biochem Biophys Res Commun; 1970 Oct; 41(2):435-40. PubMed ID: 5518173
    [No Abstract]   [Full Text] [Related]  

  • 10. Substrate specificity of ribosomal peptidyl transferase. II. 2'(3')-O-aminoacyl nucleosides as acceptors of the peptide chain in the fragment reaction.
    Cerná J; Rychlík I; Zemlicka J; Chládek S
    Biochim Biophys Acta; 1970 Mar; 204(1):203-9. PubMed ID: 4908647
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of modified nucleoside adjacent to 3'-end of anticodon in codon-anticodon interaction.
    Ghosh K; Ghosh HP
    Biochem Biophys Res Commun; 1970 Jul; 40(1):135-43. PubMed ID: 5456949
    [No Abstract]   [Full Text] [Related]  

  • 12. Preparation in vitro of a 2-thiocytidine-containing yeast tRNA Phe -A 73 -C 74 -S 2 C 75 -A 76 and its interaction wiith p-hydroxymercuribenzoate.
    Sprinzl M; Scheit KH; Cramer F
    Eur J Biochem; 1973 Apr; 34(2):306-10. PubMed ID: 4575980
    [No Abstract]   [Full Text] [Related]  

  • 13. Modification of ribonucleic acid by chemical carcinogens. VI. Effect of N-2-acetylaminofluorene modification of guanosine on the codon function of adjacent nucleosides in oligonucleotides.
    Grunberger D; Blobstein SH; Weinstein IB
    J Mol Biol; 1974 Feb; 82(4):459-68. PubMed ID: 4594146
    [No Abstract]   [Full Text] [Related]  

  • 14. [A preparative procedure for the isolation of enriched preparations of aminoacyl-tRNA-synthetases from baker's yeast].
    Ovander MN; Sandakhchiev LS
    Biokhimiia; 1966; 31(6):1121-6. PubMed ID: 5999843
    [No Abstract]   [Full Text] [Related]  

  • 15. Acceptor activity in homologous and heterologous combinations of half molecules from tRNA Phe yeast and tRNA Phe wheat.
    Thiebe R; Zachau HG
    Biochem Biophys Res Commun; 1969 Sep; 36(6):1024-31. PubMed ID: 5344721
    [No Abstract]   [Full Text] [Related]  

  • 16. Synthesis and coding properties of 8-azaguanosinecontaining triribonucleoside diphosphates.
    Grünberger D; Holý A; Sorm F
    Biochim Biophys Acta; 1968 Jun; 161(1):147-55. PubMed ID: 5661366
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of 5'-terminal phosphate on the recognition of some dinucleoside phosphates by [14C]aminoacyl-tRNA.
    Grünberger D; Holý A; Sorm F
    Biochim Biophys Acta; 1968 Apr; 157(2):439-42. PubMed ID: 5649917
    [No Abstract]   [Full Text] [Related]  

  • 18. EFFECT OF BROMINATION ON THE AMINO ACID-ACCEPTING ACTIVITIES OF TRANSFER RIBONUCLEIC ACIDS.
    YU CT; ZAMECNIK PC
    Biochim Biophys Acta; 1963 Oct; 76():209-22. PubMed ID: 14097377
    [No Abstract]   [Full Text] [Related]  

  • 19. Specific aggregation of yeast glycine tRNA.
    Hampel A; Cherayil J; Bock RM
    Biochim Biophys Acta; 1971 Jan; 228(2):482-91. PubMed ID: 5545876
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis and conformational properties of diribonucleoside monophosphates containing modified nucleosides as found in transfer RNA.
    Schweizer MP; Thedford R; Slama J
    Biochim Biophys Acta; 1971 Mar; 232(2):217-26. PubMed ID: 5553678
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.