BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 5583802)

  • 1. Aerobic reduction of cytochrome c preparation by xanthine oxidase. 3. Mechanism of 8-hydroxyquinoline in activating the aerobic reduction of cytochrome c.
    Enomoto H
    Chem Pharm Bull (Tokyo); 1967 Oct; 15(10):1521-8. PubMed ID: 5583802
    [No Abstract]   [Full Text] [Related]  

  • 2. Aerobic reduction of cytochrome c preparation by xanthine oxidase. II. Prevention of reoxidation of reduced cytochrome c by 8-hydroxyquinoline and m-phenylenediamine.
    Enomoto H; Yamaguchi T
    Chem Pharm Bull (Tokyo); 1967 Oct; 15(10):1514-20. PubMed ID: 5583801
    [No Abstract]   [Full Text] [Related]  

  • 3. EVIDENCE FOR AEROBIC AND ANAEROBIC MECHANISMS FOR REDUCTION OF CYTOCHROME C BY XANTHINE OXIDASE.
    MURAOKA S; SUGIYAMA M; YAMASAKI H
    Biochem Biophys Res Commun; 1965 Apr; 19():346-50. PubMed ID: 14317400
    [No Abstract]   [Full Text] [Related]  

  • 4. Aerobic reduction of cytochrome c preparation by xanthine oxidase. I. Reduction and reoxidation of cytochrome c.
    Muraoka S; Enomoto H; Sugiyama M; Yamasaki H
    Chem Pharm Bull (Tokyo); 1967 Sep; 15(9):1373-9. PubMed ID: 5583712
    [No Abstract]   [Full Text] [Related]  

  • 5. The mechanism of proton translocation by the cytochrome system of mitochondria. Characterization of proton-transfer reactions associated with oxidoreductions of terminal respiratory carriers.
    Papa S; Guerrieri F; Izzo G
    Biochem J; 1983 Nov; 216(2):259-72. PubMed ID: 6318731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MULTIPLE BOVINE MYOGLOBIN INHIBITION OF CYTOCHROME C REDUCTION BY XANTHINE OXIDASE.
    QUINN JR; PEARSON AM
    Nature; 1964 Feb; 201():928-9. PubMed ID: 14132796
    [No Abstract]   [Full Text] [Related]  

  • 7. The mechanism of the reduction of cytochrome c by xanthine oxidase.
    Muraoka S; Enomoto H; Sugiyama M; Yamasaki H
    Biochim Biophys Acta; 1967 Sep; 143(2):408-15. PubMed ID: 6069205
    [No Abstract]   [Full Text] [Related]  

  • 8. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reduction of cytochrome c by milk xanthine oxidase.
    McCord JM; Fridovich I
    J Biol Chem; 1968 Nov; 243(21):5753-60. PubMed ID: 4972775
    [No Abstract]   [Full Text] [Related]  

  • 11. Application of electron-donor properties of glucose oxidase and xanthine oxidase for reduction of microsomal NAD(P)H-dependent electron-transport chains.
    Izotov MV; Shcherbakov VM; Spiridonova SM; Devichenskiy VM; Benediktova SA
    Biotechnol Appl Biochem; 1991 Feb; 13(1):90-6. PubMed ID: 2054105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of sanazole nitro radicals by xanthine oxidase.
    Shchepetkin IA
    Biochemistry (Mosc); 1998 Dec; 63(12):1378-84. PubMed ID: 9916154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of cytochrome oxidase with hydrogen peroxide: the relationship of compounds P and F.
    Fabian M; Palmer G
    Biochemistry; 1995 Oct; 34(42):13802-10. PubMed ID: 7577973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholamines oxidation by xanthine oxidase.
    Foppoli C; Coccia R; Cini C; Rosei MA
    Biochim Biophys Acta; 1997 Mar; 1334(2-3):200-6. PubMed ID: 9101714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vanadate-stimulated NADH oxidation by xanthine oxidase: an intrinsic property.
    Khandke L; Gullapalli S; Patole MS; Ramasarma T
    Arch Biochem Biophys; 1986 Feb; 244(2):742-9. PubMed ID: 3633190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reduction of cytochrome c by hypoxanthine and xanthine oxidase.
    MORELL DB
    Biochem J; 1952 Aug; 51(5):666-9. PubMed ID: 13018142
    [No Abstract]   [Full Text] [Related]  

  • 17. Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C=N(OH) bond with formation of nitrogen oxides.
    Jousserandot A; Boucher JL; Henry Y; Niklaus B; Clement B; Mansuy D
    Biochemistry; 1998 Dec; 37(49):17179-91. PubMed ID: 9860831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reduction of cytochrome c by xanthine oxidase.
    HORECKER BL; HEPPEL LA
    J Biol Chem; 1949 Apr; 178(2):683-90. PubMed ID: 18116990
    [No Abstract]   [Full Text] [Related]  

  • 19. Oxidation of 7-aminothiadiazolo(3,4-d)pyrimidines and 7-aminofurazano(3,4-d)pyrimidines by xanthine oxidase and aldehyde oxidase.
    McCormack JJ; Taylor EC
    Biochem Pharmacol; 1975 Sep; 24(17):1636-9. PubMed ID: 172085
    [No Abstract]   [Full Text] [Related]  

  • 20. C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils.
    Zeller JM; Sullivan BL
    J Leukoc Biol; 1992 Oct; 52(4):449-55. PubMed ID: 1328445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.