These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 558588)
21. Long-lasting marks of extracellularly recorded sites by carbon fiber glass micropipettes in the frontal cortex of chronic monkeys. Sawaguchi T; Matsumura M; Kubota K J Neurosci Methods; 1986 Feb; 15(4):341-8. PubMed ID: 2421113 [TBL] [Abstract][Full Text] [Related]
22. A multimicroelectrode system composed of independent glass micropipettes with an eccentric tip structure for simultaneous intracellular recording. Saburi M; Yamada M; Shigematsu Y IEEE Trans Biomed Eng; 1992 Jun; 39(6):656-8. PubMed ID: 1601448 [TBL] [Abstract][Full Text] [Related]
23. A high voltage electrometer for recording and iontophoresis with fine-tipped, high resistance microelectrodes. Jochem WJ; Light AR; Smith D J Neurosci Methods; 1981 Feb; 3(3):261-9. PubMed ID: 7218854 [TBL] [Abstract][Full Text] [Related]
24. A device for beveling fine micropipettes. Proenza LM; Morton RE Physiol Behav; 1975 Apr; 14(04):511-3. PubMed ID: 1135297 [No Abstract] [Full Text] [Related]
25. An ultracompliant glass microelectrode for intracellular recording. Fedida D; Sethi S; Mulder BJ; ter Keurs HE Am J Physiol; 1990 Jan; 258(1 Pt 1):C164-70. PubMed ID: 2301563 [TBL] [Abstract][Full Text] [Related]
26. Instrumentation and technique for beveling fine micropipette electrodes. Brown KT; Flaming DG Brain Res; 1975 Mar; 86(1):172-80. PubMed ID: 1115993 [No Abstract] [Full Text] [Related]
27. A novel method for glass micropipette polishing for electropatch clamp recording using oxygen plasma. Itoh K; Nishimoto I Biochem Biophys Res Commun; 1993 Mar; 191(2):447-52. PubMed ID: 8461003 [TBL] [Abstract][Full Text] [Related]
28. A new technique for beveling the tips of glass capillary micropipettes and microelectrodes. Chang JJ Comp Biochem Physiol A Comp Physiol; 1975 Nov; 52(3):567-70. PubMed ID: 241558 [No Abstract] [Full Text] [Related]
29. A modified coaxial compound micropipette for extracellular iontophoresis and intracellular recording: fabrication, performance and theory. Remmers JE; Schultz SA; Wallace J; Takeda R; Haji A Jpn J Pharmacol; 1997 Oct; 75(2):161-9. PubMed ID: 9414031 [TBL] [Abstract][Full Text] [Related]
30. A multi-barrelled coaxial electrode for iontophoresis and intracellular recording with a gold shield of the central pipette for capacitance neutralization. Sonnhof U Pflugers Arch; 1973 Jul; 341(4):351-8. PubMed ID: 4798749 [No Abstract] [Full Text] [Related]
31. Quartz micropipettes for intracellular voltage microelectrodes and ion-selective microelectrodes. Munoz JL; Coles JA J Neurosci Methods; 1987 Nov; 22(1):57-64. PubMed ID: 2826932 [TBL] [Abstract][Full Text] [Related]
32. Thick slurry bevelling: a new technique for bevelling extremely fine microelectrodes and micropipettes. Lederer WJ; Spindler AJ; Eisner DA Pflugers Arch; 1979 Sep; 381(3):287-8. PubMed ID: 574638 [TBL] [Abstract][Full Text] [Related]
33. Pressure-polishing pipettes for improved patch-clamp recording. Johnson BE; Brown AL; Goodman MB J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078936 [TBL] [Abstract][Full Text] [Related]
35. A simple and effective method for preventing the formation of salt bridges between barrels of a multibarrel microiontophoresis electrode. Shi WX; Bunney BS J Neurosci Methods; 1990 Oct; 35(1):89-91. PubMed ID: 2277537 [TBL] [Abstract][Full Text] [Related]
36. A combined recording and microiontophoresis technique for input-output analysis of single neurons in the mammalian CNS. Gottschaldt KM; Hicks TP; Vahle-Hinz C J Neurosci Methods; 1988 Apr; 23(3):233-9. PubMed ID: 3367660 [TBL] [Abstract][Full Text] [Related]
37. A simple and comprehensive method for the construction, repair and recycling of single and double tungsten microelectrodes. Li CY; Xu XZ; Tigwell D J Neurosci Methods; 1995 Apr; 57(2):217-20. PubMed ID: 7609585 [TBL] [Abstract][Full Text] [Related]
38. [A method of rapid beveling of microelectrodes using vibration]. Maĭskiĭ VA; Fridlianskii VIa Fiziol Zh (1978); 1989; 35(3):107-9. PubMed ID: 2737318 [TBL] [Abstract][Full Text] [Related]
39. A reproducible technique for breaking glass micropipettes over a wide range of tip diameters. Briano RA J Neurosci Methods; 1983 Sep; 9(1):31-4. PubMed ID: 6632960 [TBL] [Abstract][Full Text] [Related]
40. A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats. Deadwyler SA; Biela J; Rose G; West M; Lynch G Electroencephalogr Clin Neurophysiol; 1979 Dec; 47(6):752-4. PubMed ID: 91506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]