These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 558588)

  • 41. Tip potential of open-tip glass microelectrodes: theoretical and experimental studies.
    Gagné S; Plamondon R
    Can J Physiol Pharmacol; 1983 Aug; 61(8):857-69. PubMed ID: 6627127
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantification of noradrenaline iontophoresis.
    Armstrong-James M; Millar J; Kruk ZL
    Nature; 1980 Nov; 288(5787):181-3. PubMed ID: 7432519
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-unit pH-sensitive double-barreled microelectrodes for extracellular use.
    Javaheri S; De Hemptinne A; Leusen I
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Sep; 57(3):907-12. PubMed ID: 6490474
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multibarreled glass-coated tungsten microelectrode for both neuronal activity recording and iontophoresis in monkeys.
    Li BM; Mei ZT; Kubota K
    Neurosci Res; 1990 Jul; 8(3):214-9. PubMed ID: 2170880
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An apparatus for the assembly of a combined single barrel recording electrode and a multibarrelled micropipette.
    Tamura Y; Maruyama S
    J Neurosci Methods; 1979 Oct; 1(3):249-52. PubMed ID: 544969
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two types of bipolar microelectrodes for intraretinal use.
    Alferdinck JW; Valeton JM; Van Norren D
    J Neurosci Methods; 1981 Apr; 3(4):397-404. PubMed ID: 7242147
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Whole-cell recording of intracellular pH with silanized and oiled patch-type single or double-barreled microelectrodes.
    Thomas RC; Pagnotta SE; Nistri A
    Pflugers Arch; 2003 Nov; 447(2):259-65. PubMed ID: 12937988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication and use of high-speed, concentric h+- and Ca2+-selective microelectrodes suitable for in vitro extracellular recording.
    Fedirko N; Svichar N; Chesler M
    J Neurophysiol; 2006 Aug; 96(2):919-24. PubMed ID: 16672303
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A simple circuit for automatic continuous recording of microelectrode resitance.
    Naylor GR
    Pflugers Arch; 1978 Dec; 378(2):107-10. PubMed ID: 569830
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ca-selective microelectrodes and their application to plant cells and tissues.
    Felle H
    Plant Physiol; 1989 Dec; 91(4):1239-42. PubMed ID: 16667168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A method for sampled intracellular potential measurement during microiontophoresis.
    Martin RW; Pollack GH; Myers JA
    J Appl Physiol; 1974 Sep; 37(3):468-71. PubMed ID: 4411661
    [No Abstract]   [Full Text] [Related]  

  • 52. Simultaneous Measurement of Intracellular pH and K+ or NO3- in Barley Root Cells Using Triple-Barreled, Ion-Selective Microelectrodes.
    Walker DJ; Smith SJ; Miller AJ
    Plant Physiol; 1995 Jun; 108(2):743-751. PubMed ID: 12228506
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Work experience in recording cochlear potentials with the use of glass microelectrodes].
    Prazhma I
    Vestn Otorinolaringol; 1969; 31(4):71-6. PubMed ID: 5377965
    [No Abstract]   [Full Text] [Related]  

  • 54. Development of a new geometrical form of micropipette: electrical characteristics and an application as a potassium ion selective electrode.
    Abatti PJ; Moriizumi T
    IEEE Trans Biomed Eng; 1992 Jan; 39(1):43-8. PubMed ID: 1572680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recording of single unit activity during electrical stimulation and microiontophoresis: a method of minimizing stimulus artifacts.
    Wang RY; Aghajanian GK
    Electroencephalogr Clin Neurophysiol; 1977 Sep; 43(3):434-7. PubMed ID: 70345
    [No Abstract]   [Full Text] [Related]  

  • 56. Extracellular and intracellular recording during micro-iontophoresis: an appraisal [proceedings].
    Engberg I; Flatman JA; Lambert JD
    Br J Pharmacol; 1978 Nov; 64(3):451P-452P. PubMed ID: 719294
    [No Abstract]   [Full Text] [Related]  

  • 57. Controlled bending of high-resistance glass microelectrodes.
    Hudspeth AJ; Corey DP
    Am J Physiol; 1978 Jan; 234(1):C56-7. PubMed ID: 623241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new method of manufacturing multi-barrelled micropipettes with projecting recording barrel.
    Carette B
    Electroencephalogr Clin Neurophysiol; 1978 Feb; 44(2):248-50. PubMed ID: 75100
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A quasi-totally shielded, low-capacitance glass-microelectrode with suitable amplifiers for high-frequency intracellular potential and impedance measurements.
    Suzuki K; Rohlicek V; Frömter E
    Pflugers Arch; 1978 Dec; 378(2):141-8. PubMed ID: 569835
    [No Abstract]   [Full Text] [Related]  

  • 60. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.