These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 558588)
61. Preparation of carbon-fibre microelectrode for extracellular recording of synaptic potentials. Kuras A; Gutmaniene N J Neurosci Methods; 1995 Nov; 62(1-2):207-12. PubMed ID: 8750105 [TBL] [Abstract][Full Text] [Related]
62. Glass pipette-carbon fiber microelectrodes for evoked potential recordings. Moraes MF; Garcia-Cairasco N Braz J Med Biol Res; 1997 Nov; 30(11):1319-24. PubMed ID: 9532241 [TBL] [Abstract][Full Text] [Related]
63. [A method for repairing the tip of tungsten-in-glass microelectrode]. Xu XZ Sheng Li Xue Bao; 1993 Apr; 45(2):196-9. PubMed ID: 8356475 [TBL] [Abstract][Full Text] [Related]
64. A direct-reading device for measurement of patch-clamp micropipette tip diameters. Martin DK; Cook DI Pflugers Arch; 1990 Nov; 417(3):255-8. PubMed ID: 2274413 [TBL] [Abstract][Full Text] [Related]
65. [Set of microelectrodes with changeable barrels for multichannel iontophoresis]. Pivovarov AS; Trepakov VV Fiziol Zh SSSR Im I M Sechenova; 1982 Jun; 68(6):820-3. PubMed ID: 7117602 [No Abstract] [Full Text] [Related]
66. A concentric multi-barrelled micro-electrode for use in microiontophoresis [proceedings]. Biscoe TJ; Martin MR; Rickets C J Physiol; 1978 Apr; 277():25P-26P. PubMed ID: 650527 [No Abstract] [Full Text] [Related]
67. Simple apparatus for the electrical cleaning of glass microelectrodes. Bud'ko DYu ; Moroz LL; Gurin VN Neurosci Behav Physiol; 1998; 28(1):86-9. PubMed ID: 9513983 [No Abstract] [Full Text] [Related]
68. [Device for the measurement of rest potentials with glass microelectrodes in isolated frog skeletal muscle fibers]. Schuster T Acta Biol Med Ger; 1969; 22(5):811-3. PubMed ID: 5372107 [No Abstract] [Full Text] [Related]
69. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip. Johnson LJ; Cohen E; Ilg D; Klein R; Skeath P; Scribner DA J Neurosci Methods; 2012 Apr; 205(2):223-32. PubMed ID: 22266817 [TBL] [Abstract][Full Text] [Related]
70. Measurement of intracellular pH of skeletal muscle with pH-sensitive glass microelectrodes. Carter NW; Rector FC; Campion DS; Seldin DW J Clin Invest; 1967 Jun; 46(6):920-33. PubMed ID: 6026098 [TBL] [Abstract][Full Text] [Related]
71. A simple glass-coated, fire-polished tungsten electrode with conductance adjustment using hydrofluoridic acid. Wörgötter F; Eysel UT J Neurosci Methods; 1988 Sep; 25(2):135-8. PubMed ID: 3172823 [TBL] [Abstract][Full Text] [Related]
72. A technique for the controlled fracture of micropipette electrode tips. Robjohns SL; Miles TS Brain Res Bull; 1979; 4(2):291-2. PubMed ID: 466516 [TBL] [Abstract][Full Text] [Related]
73. A special holder allows replacement of the recording barrel of a 'piggy-back' multibarrel microelectrode. Schurr A; Rigor BM Electroencephalogr Clin Neurophysiol; 1981 May; 51(5):571-3. PubMed ID: 6165558 [TBL] [Abstract][Full Text] [Related]
74. Marking the tip location of PO2 microelectrodes or glass micropipettes. Nair P; Spande JI; Whalen WJ J Appl Physiol Respir Environ Exerc Physiol; 1980 Nov; 49(5):916-8. PubMed ID: 7429916 [TBL] [Abstract][Full Text] [Related]
75. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells. de Asis ED; Leung J; Wood S; Nguyen CV Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008 [TBL] [Abstract][Full Text] [Related]
76. A piezotranslator with variable movement pattern: experiences with the penetration of very small cells. Nobiling R; Bührle CP J Neurosci Methods; 1986 May; 16(3):201-15. PubMed ID: 3724233 [TBL] [Abstract][Full Text] [Related]
77. A microlathe for constructing miniature multibarrel micropipettes for iontophoretic drug application. Spencer HJ Experientia; 1973 Dec; 29(12):1577-9. PubMed ID: 4772069 [No Abstract] [Full Text] [Related]
78. Intracellular recording from beating heart in situ using a special micropipette holder. Akiyama T; Serrino P Am J Physiol; 1979 Sep; 237(3):H392-4. PubMed ID: 474777 [TBL] [Abstract][Full Text] [Related]
79. Tip size of ion-exchanger based K+-selective microelectrodes. I. Effects on selectivity. Carlini WG; Ransom BR Can J Physiol Pharmacol; 1987 May; 65(5):889-93. PubMed ID: 3621051 [TBL] [Abstract][Full Text] [Related]
80. An improved method for constructing and selectively silanizing double-barreled, neutral liquid-carrier, ion-selective microelectrodes. Deveau JS; Lindinger MI; Grodzinski B Biol Proced Online; 2005; 7():31-40. PubMed ID: 16136222 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]