These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 5586929)
1. The crystal structure of bovine liver catalase: a combined study by x-ray diffraction and electron microscopy. Longley W J Mol Biol; 1967 Dec; 30(2):323-7. PubMed ID: 5586929 [No Abstract] [Full Text] [Related]
2. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III. Foroughi LM; Kang YN; Matzger AJ Acta Crystallogr D Biol Crystallogr; 2011 Sep; 67(Pt 9):756-62. PubMed ID: 21904028 [TBL] [Abstract][Full Text] [Related]
3. Crystallographic study of beef liver catalase. McPherson A; Rich A Arch Biochem Biophys; 1973 Jul; 157(1):23-7. PubMed ID: 4736805 [No Abstract] [Full Text] [Related]
4. Structure of catalase determined by MicroED. Nannenga BL; Shi D; Hattne J; Reyes FE; Gonen T Elife; 2014 Oct; 3():e03600. PubMed ID: 25303172 [TBL] [Abstract][Full Text] [Related]
6. Direct methods in protein electron crystallography--beef liver catalase in its fully hydrated form at room temperature. Dorset DL; Gilmore CJ Acta Crystallogr A; 1999 May; 55 ( Pt 3)():448-56. PubMed ID: 10360325 [TBL] [Abstract][Full Text] [Related]
7. Catalase-like crystals in parathyroid gland cells of Rana temporaria L. Lange RH; Soames AR; Coleman R Cell Tissue Res; 1974; 153(2):167-73. PubMed ID: 4374308 [No Abstract] [Full Text] [Related]
11. Equivalence of the projected structure of thin catalase crystals preserved for electron microscopy by negative stain, glucose or embedding in the presence of tannic acid. Akey CW; Edelstein SJ J Mol Biol; 1983 Feb; 163(4):575-612. PubMed ID: 6842587 [TBL] [Abstract][Full Text] [Related]
13. Biological applications of electron diffraction. Murray RT; Ferrier RP J Ultrastruct Res; 1967 Dec; 21(5):361-77. PubMed ID: 5590725 [No Abstract] [Full Text] [Related]
14. Structure of orthorhombic crystals of beef liver catalase. Ko TP; Day J; Malkin AJ; McPherson A Acta Crystallogr D Biol Crystallogr; 1999 Aug; 55(Pt 8):1383-94. PubMed ID: 10417406 [TBL] [Abstract][Full Text] [Related]
15. NUCLEATION AND MORPHOLOGY OF CHYMOTRYPSINOGEN CRYSTALS. HAMILTON JA; KOUTSKY JA; WALTON AG Nature; 1964 Dec; 204():1085-6. PubMed ID: 14243386 [No Abstract] [Full Text] [Related]
16. Crystallographic evidence for the structural isomorphism of deer and beef catalase. Burkey DJ; McPherson A Experientia; 1977 Jul; 33(7):880-1. PubMed ID: 911385 [No Abstract] [Full Text] [Related]
17. ELECTRON OPTICAL AND X-RAY DIFFRACTION STUDIES OF THE ORGANIZATION OF THE INORGANIC CRYSTALS IN EMBRYONIC BOVINE ENAMEL. GLIMCHER MJ; DANIEL EJ; TRAVIS DF; KAMHI S J Ultrastruct Res; 1965 May; 50():SUPPL 7:1-77. PubMed ID: 14328465 [No Abstract] [Full Text] [Related]
18. CRYSTALS OF CALCIUM OXALATE IN THE HUMAN KIDNEY. STUDIES BY MEANS OF ELECTRON MICROPROBE AND X-RAY DIFFRACTION. BENNINGTON JL; HABER SL; SMITH JV; WARNER NE Am J Clin Pathol; 1964 Jan; 41():8-14. PubMed ID: 14100682 [No Abstract] [Full Text] [Related]
19. Structure and heme environment of beef liver catalase at 2.5 A resolution. Reid TJ; Murthy MR; Sicignano A; Tanaka N; Musick WD; Rossmann MG Proc Natl Acad Sci U S A; 1981 Aug; 78(8):4767-71. PubMed ID: 6946424 [TBL] [Abstract][Full Text] [Related]
20. Electron tunneling and ab initio calculations related to the one-electron oxidation of NAD(P)H bound to catalase. Olson LP; Bruice TC Biochemistry; 1995 Jun; 34(22):7335-47. PubMed ID: 7779776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]