These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 5587602)
1. Studies on the biosynthesis of lignin. 3. Dehydrogenative polymerization of coniferyl alcohol by peroxidase. Nozu Y J Biochem; 1967 Nov; 62(5):519-30. PubMed ID: 5587602 [No Abstract] [Full Text] [Related]
2. Studies on the biosynthesis of lignin. II. Purification and properties of peroxidases from bamboo shoots. Nakamura W; Nozu Y J Biochem; 1967 Sep; 62(3):308-14. PubMed ID: 5586499 [No Abstract] [Full Text] [Related]
3. Studies on the biosynthesis of lignin. I. Disproof against the catalytic activity of laccase in the oxidation of coniferyl alcohol. Nakamura W J Biochem; 1967 Jul; 62(1):54-61. PubMed ID: 6073175 [No Abstract] [Full Text] [Related]
4. Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in beta-O-4 linkage. Sasaki S; Nishida T; Tsutsumi Y; Kondo R FEBS Lett; 2004 Mar; 562(1-3):197-201. PubMed ID: 15044025 [TBL] [Abstract][Full Text] [Related]
5. Phenoxy radical intermediates in the enzymatic degradation of lignin model compounds. Caldwell ES; Steelink C Biochim Biophys Acta; 1969 Jul; 184(2):420-31. PubMed ID: 4309260 [No Abstract] [Full Text] [Related]
6. H(2)O(2) generation during the auto-oxidation of coniferyl alcohol drives the oxidase activity of a highly conserved class III peroxidase involved in lignin biosynthesis. Pomar F; Caballero N; Pedreño M; Ros Barceló A FEBS Lett; 2002 Oct; 529(2-3):198-202. PubMed ID: 12372600 [TBL] [Abstract][Full Text] [Related]
7. Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture. Koutaniemi S; Toikka MM; Kärkönen A; Mustonen M; Lundell T; Simola LK; Kilpeläinen IA; Teeri TH Plant Mol Biol; 2005 May; 58(2):141-57. PubMed ID: 16027971 [TBL] [Abstract][Full Text] [Related]
8. Norway spruce (Picea abies) laccases: characterization of a laccase in a lignin-forming tissue culture. Koutaniemi S; Malmberg HA; Simola LK; Teeri TH; Kärkönen A J Integr Plant Biol; 2015 Apr; 57(4):341-8. PubMed ID: 25626739 [TBL] [Abstract][Full Text] [Related]
9. Mössbauer spectroscopic evidence for the electronic configuration of iron in horseradish peroxidase and its peroxide derivatives. Moss TH; Ehrenberg A; Bearden AJ Biochemistry; 1969 Oct; 8(10):4159-62. PubMed ID: 5346394 [No Abstract] [Full Text] [Related]
10. Arabidopsis peroxidase-catalyzed copolymerization of coniferyl and sinapyl alcohols: kinetics of an endwise process. Demont-Caulet N; Lapierre C; Jouanin L; Baumberger S; Méchin V Phytochemistry; 2010 Oct; 71(14-15):1673-83. PubMed ID: 20615517 [TBL] [Abstract][Full Text] [Related]
11. Lignin chemistry: biosynthetic study and structural characterisation of coniferyl alcohol oligomers formed in vitro in a micellar environment. Reale S; Attanasio F; Spreti N; De Angelis F Chemistry; 2010 May; 16(20):6077-87. PubMed ID: 20397161 [TBL] [Abstract][Full Text] [Related]
12. Use of tolylene diisocyanate for the preparation of a peroxidase-labelled antibody conjugate. Quantitation of the amount of diisocyanate bound. Modesto RR; Pesce AJ Biochim Biophys Acta; 1973 Jan; 295(1):283-95. PubMed ID: 4119457 [No Abstract] [Full Text] [Related]
13. Bonding of Lignin and Coniferyl Alcohol by a Redox Shuttle of Low-Molecular-Weight Lignols in Enzymatic Oxidative Dehydrogenative Polymerization. Nishimoto T; Takagi K; Aoki D; Fukushima K; Matsushita Y Biomacromolecules; 2024 Jun; 25(6):3620-3627. PubMed ID: 38806062 [TBL] [Abstract][Full Text] [Related]
14. Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. Fagerstedt KV; Kukkola EM; Koistinen VV; Takahashi J; Marjamaa K J Integr Plant Biol; 2010 Feb; 52(2):186-94. PubMed ID: 20377680 [TBL] [Abstract][Full Text] [Related]
15. INVESTIGATIONS ON LIGNINS AND LIGNIFICATION. XXX. ENZYMIC DEGRADATION OF GUAIACYLGLYCEROL AND RELATED COMPOUNDS BY WHITE-ROT FUNGI. ISHIKAWA H; SCHUBERT WJ; NORD FF Biochem Z; 1963; 338():153-63. PubMed ID: 14087288 [No Abstract] [Full Text] [Related]
16. The suppression of AtPrx52 affects fibers but not xylem lignification in Arabidopsis by altering the proportion of syringyl units. Fernández-Pérez F; Pomar F; Pedreño MA; Novo-Uzal E Physiol Plant; 2015 Jul; 154(3):395-406. PubMed ID: 25410139 [TBL] [Abstract][Full Text] [Related]
17. In vitro analysis of the monolignol coupling mechanism using dehydrogenative polymerization in the presence of peroxidases and controlled feeding ratios of coniferyl and sinapyl alcohol. Moon SJ; Kwon M; Choi D; Won K; Kim YH; Choi IG; Choi JW Phytochemistry; 2012 Oct; 82():15-21. PubMed ID: 22884779 [TBL] [Abstract][Full Text] [Related]
18. beta-fluoro-coniferyl alcohol does not inhibit lignin biosynthesis in suspension cultures of Picea abies (L.) Karst. Gustafsson M; Kärkönen A; Simola LK; Teeri TH; Sipilä J; Kilpeläinen I; Brunow G Phytochemistry; 2001 Sep; 58(2):243-8. PubMed ID: 11551546 [TBL] [Abstract][Full Text] [Related]
19. Oxidation systems in fruits and vegetables--their relation to the quality of preserved products. Aylward F; Haisman DR Adv Food Res; 1969; 17():1-76. PubMed ID: 4900963 [No Abstract] [Full Text] [Related]