BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 559349)

  • 1. Lens cataract formation and reversible alteration in crystallin synthesis in cultured lenses.
    Piatigorsky J; Shinohara T
    Science; 1977 Jun; 196(4296):1345-7. PubMed ID: 559349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. delta-crystallin synthesis and vacuole formation during induced opacification of cultured embryonic chick lenses.
    Shinohara T; Robison WG; Piatigorsky J
    Invest Ophthalmol Vis Sci; 1978 Jun; 17(6):515-22. PubMed ID: 659072
    [No Abstract]   [Full Text] [Related]  

  • 3. Alpha neoprotein molecules in normal lenses from animals of different ages and in cataractous lenses.
    Manski W; Malinowski K
    Exp Eye Res; 1985 Feb; 40(2):179-90. PubMed ID: 3884353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of protein synthesis, intracellular electrolytes and cataract formation in vitro.
    Shinohara T; Piatigorsky J
    Nature; 1977 Dec; 270(5636):406-11. PubMed ID: 563520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the involvement of calpain in cataractogenesis in Shumiya cataract rat (SCR).
    Inomata M; Nomura K; Takehana M; Saido TC; Kawashima S; Shumiya S
    Biochim Biophys Acta; 1997 Nov; 1362(1):11-23. PubMed ID: 9434095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-dependent differences in the ratio of synthesis of delta-crystallin polypeptides in cultured vitreous-free lenses of chick embryos.
    Shinohara T; Piatigorsky J
    Dev Biol; 1979 Oct; 72(2):385-9. PubMed ID: 510793
    [No Abstract]   [Full Text] [Related]  

  • 7. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography.
    Pereira PC; Ramalho JS; Faro CJ; Mota MC
    Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent change in alpha crystallin during human senile cataractogenesis.
    Takemoto L; Granstrom D; Kodama T; Wong R
    Biochem Biophys Res Commun; 1988 Feb; 150(3):987-95. PubMed ID: 3342073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the DNA breakage and crystallin synthesis of embryonic chicken lenses cultured in a tryptophan-deficient medium.
    Counis MF; Chaudun E; Carreau JP; Courtois Y
    Exp Eye Res; 1984 Jan; 38(1):1-6. PubMed ID: 6705842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of the crystallins of the normal and cataractous canine lens.
    Daniel WJ; Noonan NE; Gelatt KN
    Curr Eye Res; 1984 Jul; 3(7):911-22. PubMed ID: 6467967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes in water-soluble, urea-soluble and membrane intrinsic proteins in human senile cataract].
    Zhao HR; Hu SQ; Ren XH
    Zhonghua Yan Ke Za Zhi; 1994 May; 30(3):186-8. PubMed ID: 7842996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of water-soluble crystallins in microsectioned cataractous lenses from one hundred Egyptian patients.
    Bours J; el-Layeh AA; Emarah MH; Rink H
    Ophthalmic Res; 1995; 27 Suppl 1():54-61. PubMed ID: 8577463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Messenger RNA for cataractous lens proteins are also present on normal lens polyribosomes.
    Weill JC; Leca G; Vincent A; Civelli O; Pouliquen Y
    Eur J Biochem; 1980 Oct; 111(2):593-601. PubMed ID: 6161809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifications in lens protein biosynthesis signal the initiation of cataracts induced by buthionine sulfoximine in mice.
    Calvin HI; Wu JX; Viswanadhan K; Fu SC
    Exp Eye Res; 1996 Oct; 63(4):357-68. PubMed ID: 8944543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deamidation in human gamma S-crystallin from cataractous lenses is influenced by surface exposure.
    Lapko VN; Purkiss AG; Smith DL; Smith JB
    Biochemistry; 2002 Jul; 41(27):8638-48. PubMed ID: 12093281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term maintenance of monkey lenses in organ culture: a potential model system for the study of human cataractogenesis.
    Kamiya T; Zigler JS
    Exp Eye Res; 1996 Oct; 63(4):425-31. PubMed ID: 8944549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling cortical cataractogenesis: IX. Activity of vitamin E and esters in preventing cataracts and gamma-crystallin leakage from lenses in diabetic rats.
    Trevithick JR; Linklater HA; Mitton KP; Dzialoszynski T; Sanford SE
    Ann N Y Acad Sci; 1989; 570():358-71. PubMed ID: 2629605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.