These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 559545)
1. CHO cell mutants for arginyl-, asparagyl-, glutaminyl-, histidyl- and methionyl-transfer RNA synthetases: identification and initial characterization. Thompson LH; Lofgren DJ; Adair GM Cell; 1977 May; 11(1):157-68. PubMed ID: 559545 [No Abstract] [Full Text] [Related]
2. Role of aminoacylation of histidyl-tRNA in the regulation of protein degradation in Chinese hamster ovary cells. Scornik OA; Ledbetter ML; Malter JS J Biol Chem; 1980 Jul; 255(13):6322-9. PubMed ID: 7391021 [No Abstract] [Full Text] [Related]
4. Mutations in the structural genes of CHO cell histidyl-, valyl-, and leucyl-tRNA synthetases. Ashman CR Somatic Cell Genet; 1978 May; 4(3):299-312. PubMed ID: 694722 [TBL] [Abstract][Full Text] [Related]
5. Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae. Cherest H; Surdin-Kerjan Y; De Robichon-Szulmajster H J Bacteriol; 1975 Aug; 123(2):428-35. PubMed ID: 1099067 [TBL] [Abstract][Full Text] [Related]
6. Histidyl-tRNA synthetase of Chinese hamster ovary cells contains phosphoserine. Gerken SC; Andrulis IL; Arfin SM Biochim Biophys Acta; 1986 Jan; 869(2):215-7. PubMed ID: 3080023 [TBL] [Abstract][Full Text] [Related]
7. Subcellular topology of rat liver methionyl-, leucyl-, and arginyl-tRNA synthetases. Amar-Costesec A; Turu C Biol Cell; 1989; 65(1):21-8. PubMed ID: 2706391 [TBL] [Abstract][Full Text] [Related]
8. Selection by [3H] amino acids of CHO-cell mutants with altered leucyl- and asparagyl-transfer RNA synthetases. Thompson LH; Stanners CP; Siminovitch L Somatic Cell Genet; 1975 Apr; 1(2):187-208. PubMed ID: 1235906 [TBL] [Abstract][Full Text] [Related]
9. Amplification of the gene for histidyl-tRNA synthetase in histidinol-resistant Chinese hamster ovary cells. Tsui FW; Andrulis IL; Murialdo H; Siminovitch L Mol Cell Biol; 1985 Sep; 5(9):2381-8. PubMed ID: 2874482 [TBL] [Abstract][Full Text] [Related]
10. Six complementation classes of conditionally lethal protein synthesis mutants of CHO cells selected by 3H-amino acid. Adair GM; Thompson LH; Lindl PA Somatic Cell Genet; 1978 Jan; 4(1):27-44. PubMed ID: 628883 [TBL] [Abstract][Full Text] [Related]
11. Isolation of Chinese hamster ovary cells that overproduce asparaginyl-tRNA synthetase. Cirullo RE; Wasmuth JJ Mol Cell Biol; 1984 Sep; 4(9):1939-41. PubMed ID: 6493235 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of interspecific heat-resistant hybrids between a temperature-sensitive chinese hamster cell asparaginyl-tRNA synthetase mutant and normal human leukocytes: assignment of human asnS gene to chromosome 18. Cirullo RE; Arredondo-Vega FX; Smith M; Wasmuth JJ Somatic Cell Genet; 1983 Mar; 9(2):215-33. PubMed ID: 6836455 [TBL] [Abstract][Full Text] [Related]
13. The tRNA-dependent activation of arginine by arginyl-tRNA synthetase requires inter-domain communication. Lazard M; Agou F; Kerjan P; Mirande M J Mol Biol; 2000 Sep; 302(4):991-1004. PubMed ID: 10993737 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional architecture of the eukaryotic multisynthetase complex determined from negatively stained and cryoelectron micrographs. Norcum MT; Boisset N FEBS Lett; 2002 Feb; 512(1-3):298-302. PubMed ID: 11852099 [TBL] [Abstract][Full Text] [Related]
15. Intraphylum diversity and complex evolution of cyanobacterial aminoacyl-tRNA synthetases. Luque I; Riera-Alberola ML; Andújar A; Ochoa de Alda JA Mol Biol Evol; 2008 Nov; 25(11):2369-89. PubMed ID: 18775898 [TBL] [Abstract][Full Text] [Related]
16. Enrichment and characterization of the mRNAs of four aminoacyl-tRNA synthetases from yeast. Sellami M; Rether B; Gangloff J; Ebel JP; Bonnet J Nucleic Acids Res; 1983 May; 11(10):3269-82. PubMed ID: 6344009 [TBL] [Abstract][Full Text] [Related]
18. The glutaminyl-transfer RNA synthetase of Escherichia coli. Purification, structure and function relationship. Kern D; Potier S; Lapointe J; Boulanger Y Biochim Biophys Acta; 1980 Mar; 607(1):65-80. PubMed ID: 6989402 [TBL] [Abstract][Full Text] [Related]
19. Interaction of yeast arginyl-tRNA synthetase and aspartyl-tRNA synthetase with Blue-dextran Sepharose : assignment of the Blue-Dextran Binding site on the synthetases. Drocourt JL; Gangloff J; Dirheimer G; Thang MN Biochem Biophys Res Commun; 1980 Nov; 97(2):787-93. PubMed ID: 6162464 [No Abstract] [Full Text] [Related]
20. Discrimination between glutaminyl-tRNA synthetase and seryl-tRNA synthetase involves nucleotides in the acceptor helix of tRNA. Rogers MJ; Söll D Proc Natl Acad Sci U S A; 1988 Sep; 85(18):6627-31. PubMed ID: 3045821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]