These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 5597305)

  • 21. Degradation of quinoline by a soil bacterium.
    Grant DJ; Al-Najjar TR
    Microbios; 1976; 15(61-62):177-89. PubMed ID: 1012043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The metabolism of protocatechuate by Pseudomonas testosteroni.
    Dagley S; Geary PJ; Wood JM
    Biochem J; 1968 Oct; 109(4):559-68. PubMed ID: 5683506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The beta-ketoadipate pathway.
    Stanier RY; Ornston LN
    Adv Microb Physiol; 1973; 9(0):89-151. PubMed ID: 4599397
    [No Abstract]   [Full Text] [Related]  

  • 24. Pathways for the oxidation of aromatic compounds by Azotobacter.
    Hardisson C; Sala-Trepat JM; Stanier RY
    J Gen Microbiol; 1969 Nov; 59(1):1-11. PubMed ID: 4391505
    [No Abstract]   [Full Text] [Related]  

  • 25. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella calcoacetica. 3. Effects of 3-hydroxy-4-methylbenzoate on the synthesis of enzymes of the protocatechuate branch.
    Cánovas JL; Johnson BF; Wheelis ML
    Eur J Biochem; 1968 Jan; 3(3):305-11. PubMed ID: 5650850
    [No Abstract]   [Full Text] [Related]  

  • 26. Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum.
    Neujahr HY; Varga JM
    Eur J Biochem; 1970 Mar; 13(1):37-44. PubMed ID: 4392441
    [No Abstract]   [Full Text] [Related]  

  • 27. Influence of side-chain substituents on the position of cleavage of the benzene ring by Pseudomonas fluorescens.
    Seidman MM; Toms A; Wood JM
    J Bacteriol; 1969 Mar; 97(3):1192-7. PubMed ID: 5776526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene.
    Gibson DT; Koch JR; Kallio RE
    Biochemistry; 1968 Jul; 7(7):2653-62. PubMed ID: 4298226
    [No Abstract]   [Full Text] [Related]  

  • 29. A soluble methylene hydroxylase system: structure and role of cytochrome P-450 and iron-sulfur protein components.
    Gunsalus IC
    Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1610-3. PubMed ID: 4317681
    [No Abstract]   [Full Text] [Related]  

  • 30. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons.
    Gibson DT; Koch JR; Schuld CL; Kallio RE
    Biochemistry; 1968 Nov; 7(11):3795-802. PubMed ID: 5722247
    [No Abstract]   [Full Text] [Related]  

  • 31. Oxidation of aromatic acids by a facultative thermophilic Bacillus sp.
    Buswell JA; Clark JS
    J Gen Microbiol; 1976 Sep; 96(1):209-13. PubMed ID: 978179
    [No Abstract]   [Full Text] [Related]  

  • 32. Crystallization and properties of p-hydroxybenzoate hydroxylase from Pseudomonas putida.
    Hosokawa K; Stanier RY
    J Biol Chem; 1966 May; 241(10):2453-60. PubMed ID: 4380381
    [No Abstract]   [Full Text] [Related]  

  • 33. [The activity of nicotinic acid hydroxylase and pyrocatechase in chemosensitive mycobacteria and their chemoresistant variants].
    Lippelt CH; Bönicke R
    Zentralbl Bakteriol Orig; 1968; 209(1):62-71. PubMed ID: 4317775
    [No Abstract]   [Full Text] [Related]  

  • 34. Degradation of benzoate & salicylate by Aspergillus niger.
    Shailubhai K; Rao NN; Modi VV
    Indian J Exp Biol; 1982 Feb; 20(2):166-8. PubMed ID: 7106859
    [No Abstract]   [Full Text] [Related]  

  • 35. Combined action of a bacterial monooxygenase and a fungal laccase for the biodegradation of mono- and poly-aromatic hydrocarbons.
    Gullotto A; Branciamore S; Duchi I; Caño MF; Randazzo D; Tilli S; Giardina P; Sannia G; Scozzafava A; Briganti F
    Bioresour Technol; 2008 Nov; 99(17):8353-9. PubMed ID: 18407494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coexistence of different pathways in the metabolism of n-propylbenzene by Pseudomonas sp.
    Jigami Y; Kawasaki Y; Omori T; Minoda Y
    Appl Environ Microbiol; 1979 Nov; 38(5):783-8. PubMed ID: 543699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The metabolism of aromatic acids by Pseudomonas testosteroni and P. acidovorans.
    Wheelis ML; Palleroni NJ; Stanier RY
    Arch Mikrobiol; 1967; 59(1):302-14. PubMed ID: 5602468
    [No Abstract]   [Full Text] [Related]  

  • 38. Aromatic ring cleavage by a Thiobacillus.
    Taylor BF; Currie M; Hoare DS
    J Bacteriol; 1969 Feb; 97(2):959-60. PubMed ID: 5773038
    [No Abstract]   [Full Text] [Related]  

  • 39. Comparative studies with two pseudomonads on the sequential degradation of aromatic substances metabolized via different pathways.
    Reber H
    Arch Mikrobiol; 1973; 89(4):305-15. PubMed ID: 4693055
    [No Abstract]   [Full Text] [Related]  

  • 40. [Plasmids pBS2 and pBS3 controlling naphthalene oxidation by bacteria of the genus Pseudomonas].
    Voronin AM; Kochetkov V; Starovoitov II; Skriabin GK
    Dokl Akad Nauk SSSR; 1977 Dec; 237(5):1205-8. PubMed ID: 590083
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.