These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 5600988)

  • 21. Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneural tube potential.
    Borgens RB; Shi R
    Dev Dyn; 1995 Aug; 203(4):456-67. PubMed ID: 7496037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative analysis of the regenerative capacity of caudal spinal cord in larvae of serveral Anuran amphibian species.
    Filoni S; Bosco L
    Acta Embryol Morphol Exp (Halocynthia Assoc); 1981 Dec-1982 Jan; 2(3):199-226. PubMed ID: 6983200
    [No Abstract]   [Full Text] [Related]  

  • 23. Phenotypic characterization of neural stem cells from human fetal spinal cord: synergistic effect of LIF and BMP4 to generate astrocytes.
    Weible MW; Chan-Ling T
    Glia; 2007 Aug; 55(11):1156-68. PubMed ID: 17597119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibitory effects of ventral signals on the development of Brn-3.0-expressing neurons in the dorsal spinal cord.
    Fedtsova N; Turner EE
    Dev Biol; 1997 Oct; 190(1):18-31. PubMed ID: 9331328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinal motor axons and neural crest cells use different molecular guides for segmental migration through the rostral half-somite.
    Koblar SA; Krull CE; Pasquale EB; McLennan R; Peale FD; Cerretti DP; Bothwell M
    J Neurobiol; 2000 Mar; 42(4):437-47. PubMed ID: 10699981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Second messenger regulation of occlusion of the spinal neurocoel in the chick embryo.
    Desmond ME; Duzy MJ; Federici BD
    Dev Dyn; 1993 Aug; 197(4):291-306. PubMed ID: 8292826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cues intrinsic to the spinal cord determine the pattern and timing of primary afferent growth.
    Redmond L; Xie H; Ziskind-Conhaim L; Hockfield S
    Dev Biol; 1997 Feb; 182(2):205-18. PubMed ID: 9070322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retinoids and spinal cord development.
    Maden M
    J Neurobiol; 2006 Jun; 66(7):726-38. PubMed ID: 16688770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new teratogenic agent applied to amphibian embryos.
    Levengood WC
    J Embryol Exp Morphol; 1969 Feb; 21(1):23-31. PubMed ID: 5765792
    [No Abstract]   [Full Text] [Related]  

  • 30. Evidence that the caudal portion of the neural tube develops by cavitation of a neural cord in the caudal eminence of human embryos.
    Pytel A; Bruska M; Woźniak W
    Folia Morphol (Warsz); 2007 May; 66(2):104-8. PubMed ID: 17594667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell adhesion molecules regulate guidance of dorsal root ganglion axons in the marginal zone and their invasion into the mantle layer of embryonic spinal cord.
    Shiga T; Lustig M; Grumet M; Shirai T
    Dev Biol; 1997 Dec; 192(1):136-48. PubMed ID: 9405103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural tube development in mutant (curly tail) and normal mouse embryos: the timing of posterior neuropore closure in vivo and in vitro.
    Copp AJ; Seller MJ; Polani PE
    J Embryol Exp Morphol; 1982 Jun; 69():151-67. PubMed ID: 7119666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variations in the formation of the human caudal spinal cord.
    Saraga-Babić M; Sapunar D; Wartiovaara J
    J Hirnforsch; 1995; 36(3):341-7. PubMed ID: 7560906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The thickness of the ventral midline of the spinal cord in human embryos during the fifth week.
    Woźniak W; Lupicka J; Sroka A; Bruska M; Pytel A
    Folia Morphol (Warsz); 2008 Aug; 67(3):205-8. PubMed ID: 18828103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytoplasmic filaments and morphogenetic movement in the amphibian neural tube.
    Baker PC; Schroeder TE
    Dev Biol; 1967 May; 15(5):432-50. PubMed ID: 6032487
    [No Abstract]   [Full Text] [Related]  

  • 36. [Vimentin and neuroepithelial cell differentiation in the spinal cord of chick embryos: an immunohistochemical study].
    Kumano I; Iwatsuki H; Suda M; Sasaki K
    Kaibogaku Zasshi; 1999 Jun; 74(3):317-23. PubMed ID: 10429376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Restitution of functional neural connections in chick embryos assessed in vitro after spinal cord transection in Ovo.
    Sholomenko GN; Delaney KR
    Exp Neurol; 1998 Dec; 154(2):430-51. PubMed ID: 9878180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Synaptogenesis in the anterior horns of the spinal cord of human embryos].
    Milokhin AA; Chernova IV
    Biull Eksp Biol Med; 1981 Apr; 91(4):498-500. PubMed ID: 7260370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early synaptogenesis in the spinal cord of human embryos.
    Milokhin AA
    Acta Biol Hung; 1983; 34(2-3):231-45. PubMed ID: 6229962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Electron microscopic contribution on nerve cell differentiation and histogenesis of the gray substance of the spinal cord of chick embryos].
    Wechsler W
    Z Zellforsch Mikrosk Anat; 1966; 74(3):401-22. PubMed ID: 5986587
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.