These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 560474)

  • 1. Ionic membrane conductance during the time course of the cardiac action potential.
    Goldman Y; Morad M
    J Physiol; 1977 Jul; 268(3):655-95. PubMed ID: 560474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some limitations of the double sucrose gap, and its use in a study of the slow outward current in mammalian ventricular muscle.
    McGuigan JA
    J Physiol; 1974 Aug; 240(3):775-806. PubMed ID: 4415829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of single cell voltage clamp on the understanding of the cardiac ventricular action potential.
    VarrĂ³ A; Papp JG
    Cardioscience; 1992 Sep; 3(3):131-44. PubMed ID: 1384746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regenerative repolarization of the frog ventricular action potential: a time and voltage-dependent phenomenon.
    Goldman Y; Morad M
    J Physiol; 1977 Jul; 268(3):575-611. PubMed ID: 301932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potassium current underlying delayed rectification in cat ventricular muscle.
    McDonald TF; Trautwein W
    J Physiol; 1978 Jan; 274():217-46. PubMed ID: 624994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ito1 dictates behavior of ICl(Ca) during early repolarization of canine ventricle.
    Zygmunt AC; Robitelle DC; Eddlestone GT
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1096-106. PubMed ID: 9321794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation.
    Cleemann L; Morad M
    J Physiol; 1979 Jan; 286():113-43. PubMed ID: 312318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of an inwardly rectifying potassium current in rabbit ventricular action potential.
    Shimoni Y; Clark RB; Giles WR
    J Physiol; 1992 Mar; 448():709-27. PubMed ID: 1593485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of quinidine on membrane electrical activity in frog auricular fibres studied by current and voltage clamp.
    Ducouret P
    Br J Pharmacol; 1976 Jun; 57(2):163-84. PubMed ID: 1084773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane.
    Ohmori H; Yoshii M
    J Physiol; 1977 May; 267(2):429-63. PubMed ID: 17734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromechanical studies on the inotropic effects of acetylstrophanthidin in ventricular muscle.
    Greenspan AM; Morad M
    J Physiol; 1975 Dec; 253(2):357-84. PubMed ID: 1082501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane currents underlying activity in frog sinus venosus.
    Brown HF; Giles W; Noble SJ
    J Physiol; 1977 Oct; 271(3):783-816. PubMed ID: 303699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane calcium current in ventricular myocardial fibres.
    Beeler GW; Reuter H
    J Physiol; 1970 Mar; 207(1):191-209. PubMed ID: 5503869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A slow calcium-dependent chloride conductance in clonal anterior pituitary cells.
    Rogawski MA; Inoue K; Suzuki S; Barker JL
    J Neurophysiol; 1988 Jun; 59(6):1854-70. PubMed ID: 3404208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-clamp analysis of transmembrane ionic currents in guinea-pig myometrium: evidence for an initial potassium activation triggered by calcium influx.
    Vassort G
    J Physiol; 1975 Nov; 252(3):713-34. PubMed ID: 1206573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of transmembrane potential and current in cardiac muscle: a new voltage clamp method.
    Goldman Y; Morad M
    J Physiol; 1977 Jul; 268(3):613-54. PubMed ID: 301933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.
    Chen Y; Sun XD; Herness S
    J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Norepinephrine selectively reduces slow Ca2+- and Na+-mediated K+ currents in cat neocortical neurons.
    Foehring RC; Schwindt PC; Crill WE
    J Neurophysiol; 1989 Feb; 61(2):245-56. PubMed ID: 2918353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patch-clamp study of the ionic currents underlying action potentials in cultured frog pituitary melanotrophs.
    Louiset E; Cazin L; Lamacz M; Tonon MC; Vaudry H
    Neuroendocrinology; 1988 Nov; 48(5):507-15. PubMed ID: 2854222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic currents in cultured mouse neuroblastoma cells under voltage-clamp conditions.
    Moolenaar WH; Spector I
    J Physiol; 1978 May; 278():265-86. PubMed ID: 671297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.