These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 5605818)

  • 21. The C terminus of lens aquaporin 0 interacts with the cytoskeletal proteins filensin and CP49.
    Lindsey Rose KM; Gourdie RG; Prescott AR; Quinlan RA; Crouch RK; Schey KL
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1562-70. PubMed ID: 16565393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term lens organ culture system to determine age-related effects of UV irradiation on the eye lens.
    Azzam N; Dovrat A
    Exp Eye Res; 2004 Dec; 79(6):903-11. PubMed ID: 15642328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lens dysfunction through aging.
    Glasser A
    Ophthalmology; 2007 Mar; 114(3):618; author reply 619. PubMed ID: 17324705
    [No Abstract]   [Full Text] [Related]  

  • 24. The optical structure of the lens and its contribution to the refractive status of the eye.
    Smith G; Pierscionek BK
    Ophthalmic Physiol Opt; 1998 Jan; 18(1):21-9. PubMed ID: 9666907
    [No Abstract]   [Full Text] [Related]  

  • 25. [The separation of soluble proteins of the crystalline lens by means of filtration on sephadex gel].
    Bonavolontà A; Loffredo A; Sborgia G
    Ann Ottalmol Clin Ocul; 1966 Dec; 92(12):1236-44. PubMed ID: 5999499
    [No Abstract]   [Full Text] [Related]  

  • 26. Glycoproteins of lens membranes.
    Garadi R; Giblin FJ; Reddy VN
    Invest Ophthalmol Vis Sci; 1982 Apr; 22(4):553-7. PubMed ID: 7061224
    [No Abstract]   [Full Text] [Related]  

  • 27. Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development.
    Yu XS; Jiang JX
    J Cell Sci; 2004 Feb; 117(Pt 6):871-80. PubMed ID: 14762116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Methods for in vivo measurement of light transparency in the human crystalline lens].
    Marzec S
    Klin Oczna; 2000; 102(6):423-6. PubMed ID: 11392802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystalline lens optical dysfunction through aging.
    Alió JL; Schimchak P; Negri HP; Montés-Micó R
    Ophthalmology; 2005 Nov; 112(11):2022-9. PubMed ID: 16183126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification of the biosynthesis of the protein linked carbohydrates in bovine lens epithelial cells by the eye derived growth factor and by the extracellular matrix.
    Moczar E; Tassin J; Courtois Y
    Prog Clin Biol Res; 1984; 151():89-102. PubMed ID: 6473382
    [No Abstract]   [Full Text] [Related]  

  • 31. In vitro generation of functional lens-like structures with relevance to age-related nuclear cataract.
    O'Connor MD; McAvoy JW
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1245-52. PubMed ID: 17325169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of age on the morphology and optical quality of the avian crystalline lens.
    Priolo S; Sivak JG; Kuszak JR
    Exp Eye Res; 1999 Dec; 69(6):629-40. PubMed ID: 10620392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Retinal phototoxicity in the aging pseudophakic and phakic eye.
    Mainster MA; Turner PL
    J Cataract Refract Surg; 2009 Feb; 35(2):209-10; author reply 210-1. PubMed ID: 19185218
    [No Abstract]   [Full Text] [Related]  

  • 34. [Studies on antigenic properties of tissues and organs in animals in ontogenesis. V. Stage-specific antigens of the crystalline lens].
    KONIUKHOV BV
    Biull Eksp Biol Med; 1957 Dec; 44(12):96-102. PubMed ID: 13522831
    [No Abstract]   [Full Text] [Related]  

  • 35. [Changes of the polysomic profile during senescence of the crystalline lens].
    Maraini G; Carta F; Santori M
    Ann Ottalmol Clin Ocul; 1967 Jul; 93(7):661-6. PubMed ID: 5603565
    [No Abstract]   [Full Text] [Related]  

  • 36. Neonatal aphakia retards ocular growth and alters scleral gene expression in rhesus monkeys.
    Tarnuzzer RW; Fernandes A; Iuvone PM; Lambert SR
    Mol Vis; 2005 Jan; 11():36-49. PubMed ID: 15660023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Change in the accommodative force on the lens of the human eye with age.
    Hermans EA; Dubbelman M; van der Heijde GL; Heethaar RM
    Vision Res; 2008 Jan; 48(1):119-26. PubMed ID: 18054980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of thioltransferase (glutaredoxin) in ocular tissues.
    Wu F; Wang GM; Raghavachari N; Lou MF
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):476-80. PubMed ID: 9501856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [PROBLEMS IN PHYSIOLOGICAL AND PATHOLOGICAL AGING OF THE CRYSTALLINE LENS].
    THOMANN H
    Klin Monbl Augenheilkd; 1963 Oct; 143():338-51. PubMed ID: 14095343
    [No Abstract]   [Full Text] [Related]  

  • 40. [Variations in the viscosity of the lenticular protein systems with reference to the gradient of flow velocity].
    d'Ambrosio L; Bonavolonta' A; Santamaria R
    Boll Soc Ital Biol Sper; 1978 Feb; 53(24):2367-72. PubMed ID: 147693
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.