These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 560680)

  • 1. A technique for recording local blood flow and neuronal activity with a single microelectrode.
    Rappelsberger P; Heiss WD; Vollmer R; Turnheim M
    Pflugers Arch; 1977 Jun; 369(2):183-6. PubMed ID: 560680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new chronic recording intracortical microelectrode.
    Salcman M; Bak MJ
    Med Biol Eng; 1976 Jan; 14(1):42-50. PubMed ID: 1256090
    [No Abstract]   [Full Text] [Related]  

  • 3. Regional cerebral and extracranial blood flow measurements in acutely and chronically implanted cats: hydrogen clearance technique.
    Lamar JC; Carati P; Van Delft AM
    J Pharmacol Methods; 1981 May; 5(3):255-65. PubMed ID: 7311564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between hydrogen clearance and microsphere technique for rCBF measurement.
    Heiss WD; Traupe H
    Stroke; 1981; 12(2):161-7. PubMed ID: 7233459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio.
    Baranauskas G; Maggiolini E; Castagnola E; Ansaldo A; Mazzoni A; Angotzi GN; Vato A; Ricci D; Panzeri S; Fadiga L
    J Neural Eng; 2011 Dec; 8(6):066013. PubMed ID: 22064890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen clearance method for determining local cerebral blood flow. I. Spatial resolution.
    von Kummer R; Herold S
    J Cereb Blood Flow Metab; 1986 Aug; 6(4):486-91. PubMed ID: 3733907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the stability of intracortical microelectrode arrays.
    Liu X; McCreery DB; Bullara LA; Agnew WF
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):91-100. PubMed ID: 16562636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does Impedance Matter When Recording Spikes With Polytrodes?
    Neto JP; Baião P; Lopes G; Frazão J; Nogueira J; Fortunato E; Barquinha P; Kampff AR
    Front Neurosci; 2018; 12():715. PubMed ID: 30349453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THE EFFECT OF METRAZOL ON THE HEMODYNAMICS AND IMPEDANCE OF THE CAT'S BRAIN CORTEX.
    SHALIT MN
    J Neuropathol Exp Neurol; 1965 Jan; 24():75-84. PubMed ID: 14253575
    [No Abstract]   [Full Text] [Related]  

  • 11. Long term recording from cortical and subcortical neurons in unrestrained cats.
    Ramos A; Schwartz E; John ER
    Physiol Behav; 1976 Jun; 16(6):803-6. PubMed ID: 981376
    [No Abstract]   [Full Text] [Related]  

  • 12. Microelectrode for measuring local cortical oxygen tension and blood flow in the same microareas of cat cortex.
    Yonekura M; Austin G
    Neurol Res; 1985 Jun; 7(2):89-92. PubMed ID: 2863775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between the photoelectric method and H2 clearance method for measuring cerebrocortical blood flow in cats.
    Tomita M; Gotoh F; Tanahashi N; Kobari M; Terayama Y; Mihara B; Ohta K; Gerdsen I
    J Cereb Blood Flow Metab; 1988 Oct; 8(5):727-32. PubMed ID: 3417800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings.
    Fiáth R; Raducanu BC; Musa S; Andrei A; Lopez CM; van Hoof C; Ruther P; Aarts A; Horváth D; Ulbert I
    Biosens Bioelectron; 2018 May; 106():86-92. PubMed ID: 29414094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical note about simultaneous recording of oxygen partial pressure and neuronal activity in cat cortex.
    Wiernsperger N; Kunke S; Gygax P
    Experientia; 1976 May; 32(5):671-3. PubMed ID: 1278330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 12-fold microelectrode for recording from vertically aligned cortical neurones.
    Krüger J
    J Neurosci Methods; 1982 Nov; 6(4):347-50. PubMed ID: 7154716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI-based localization of electrophysiological recording sites within the cerebral cortex at single-voxel accuracy.
    Matsui T; Koyano KW; Koyama M; Nakahara K; Takeda M; Ohashi Y; Naya Y; Miyashita Y
    Nat Methods; 2007 Feb; 4(2):161-8. PubMed ID: 17179936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of circulation of neuronal activity in the waking cortex.
    Rinaldi P; Juhasz G; Verzeano M
    Brain Res Bull; 1976; 1(5):429-35. PubMed ID: 188527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Organization of the process of autoregulation of cerebral blood flow].
    Mitagvariia NP; Meladze VG; Begiashvili VT
    Fiziol Zh SSSR Im I M Sechenova; 1984 Jun; 70(6):822-8. PubMed ID: 6479365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.