These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 5607804)

  • 1. [Regeneration of the severed spinal cord in Pleurodeles Waltli Michah (1830)].
    Schönheit B; Rehmer H
    Z Mikrosk Anat Forsch; 1967; 77(3):453-528. PubMed ID: 5607804
    [No Abstract]   [Full Text] [Related]  

  • 2. [Further studies of the regeneration of the spinal cord of Pleurodeles Waltli Michah. (1830)].
    Schönheit B; Rehmer H
    Z Mikrosk Anat Forsch; 1968; 79(2):389-401. PubMed ID: 5744269
    [No Abstract]   [Full Text] [Related]  

  • 3. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Reparative regeneration of cat spinal cord nerve fibers].
    Khrenov AP
    Arkh Anat Gistol Embriol; 1980 Jan; 78(1):50-8. PubMed ID: 7387409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord regeneration: a phenomenon unique to urodeles?
    Chernoff EA
    Int J Dev Biol; 1996 Aug; 40(4):823-31. PubMed ID: 8877457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urodele spinal cord regeneration and related processes.
    Chernoff EA; Stocum DL; Nye HL; Cameron JA
    Dev Dyn; 2003 Feb; 226(2):295-307. PubMed ID: 12557207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibroblast growth factor-2 mRNA expression in the brainstem and spinal cord of normal and chronic spinally transected urodeles.
    Moftah M; Landry M; Nagy F; Cabelguen JM
    J Neurosci Res; 2008 Nov; 86(15):3348-58. PubMed ID: 18627027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Dec; 66(14):1564-83. PubMed ID: 17058193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Spinal cord regeneration in the Ambystoma mexicanum following experimental metamorphosis].
    Winkelmann E
    Z Mikrosk Anat Forsch; 1965; 72(2):169-87. PubMed ID: 5826820
    [No Abstract]   [Full Text] [Related]  

  • 10. [The influence of the feeding of embryonal liver tissue on the tail regeneration of Ambystoma mexicanum, with special consideration of the regeneration of the tail spinal cord].
    Richter W
    Z Mikrosk Anat Forsch; 1966; 74(4):363-91. PubMed ID: 5988091
    [No Abstract]   [Full Text] [Related]  

  • 11. The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord.
    Spilker MH; Yannas IV; Kostyk SK; Norregaard TV; Hsu HP; Spector M
    Restor Neurol Neurosci; 2001; 18(1):23-38. PubMed ID: 11673667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylprednisolone administration improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal cord.
    Chen A; Xu XM; Kleitman N; Bunge MB
    Exp Neurol; 1996 Apr; 138(2):261-76. PubMed ID: 8620925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of primary sensory axons into the adult rat spinal cord via a peripheral nerve graft bridging the lumbar dorsal roots to the dorsal column.
    Dam-Hieu P; Liu S; Choudhri T; Said G; Tadié M
    J Neurosci Res; 2002 May; 68(3):293-304. PubMed ID: 12111859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental spinal cord sections.
    Roy-Camille R; Derlon JM; Saillant G; Poirier J; Pichon F
    Arch Orthop Trauma Surg (1978); 1978 Aug; 92(2-3):113-22. PubMed ID: 363092
    [No Abstract]   [Full Text] [Related]  

  • 15. Experimental use of cultured cerebellar cortical tissue to inhibit the collagenous scar following spinal cord transection.
    Kao CC; Shimizu Y; Perkins LC; Freeman LW
    J Neurosurg; 1970 Aug; 33(2):127-39. PubMed ID: 5456808
    [No Abstract]   [Full Text] [Related]  

  • 16. Genetic influences on secondary degeneration and wound healing following spinal cord injury in various strains of mice.
    Inman D; Guth L; Steward O
    J Comp Neurol; 2002 Sep; 451(3):225-35. PubMed ID: 12210135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral nerve (PNS) spinal cord anastomoses bridging spinal cord transection--enhancement of central neurons (CNS) axonal regeneration.
    Turbes CC
    Biomed Sci Instrum; 1997; 33():326-31. PubMed ID: 9731380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raphe-spinal neurons display an age-dependent differential capacity for neurite outgrowth compared to other brainstem-spinal populations.
    Borisoff JF; Pataky DM; McBride CB; Steeves JD
    Exp Neurol; 2000 Nov; 166(1):16-28. PubMed ID: 11031080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury.
    Kwon BK; Liu J; Lam C; Plunet W; Oschipok LW; Hauswirth W; Di Polo A; Blesch A; Tetzlaff W
    Spine (Phila Pa 1976); 2007 May; 32(11):1164-73. PubMed ID: 17495772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunological myelin disruption does not alter expression of regeneration-associated genes in intact or axotomized rubrospinal neurons.
    Hiebert GW; Dyer JK; Tetzlaff W; Steeves JD
    Exp Neurol; 2000 May; 163(1):149-56. PubMed ID: 10785453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.