These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 56096)

  • 21. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of halothane on the stability of Ca2+ transport activity of isolated fragmented sarcoplasmic reticulum.
    Diamond EM; Berman MC
    Biochem Pharmacol; 1980 Feb; 29(3):375-81. PubMed ID: 6444817
    [No Abstract]   [Full Text] [Related]  

  • 23. Mg2+ and Mn2+ modulation of Ca2+ transport and ATPase activity in sarcoplasmic reticulum vesicles.
    Chiesi M; Inesi G
    Arch Biochem Biophys; 1981 May; 208(2):586-92. PubMed ID: 6455090
    [No Abstract]   [Full Text] [Related]  

  • 24. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles.
    Heilmann C; Brdiczka D; Nickel E; Pette D
    Eur J Biochem; 1977 Dec; 81(2):211-22. PubMed ID: 145941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the (Ca2+ + Mg2+)-ATPase proteins from normal and dystrophic chicken sarcoplasmic reticulum.
    Hanna SD; Baskin RJ
    Biochim Biophys Acta; 1978 Apr; 540(1):144-50. PubMed ID: 147712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium transport and release by the sarcoplasmic reticulum.
    Katz AM; Shigekawa M; Repke DI; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():205-12. PubMed ID: 22900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast kinetics of adenosine triphosphate dependent Ca 2+ uptake by fragmented sarcoplasmic reticulum.
    Inesi G; Scarpa A
    Biochemistry; 1972 Feb; 11(3):356-9. PubMed ID: 5059117
    [No Abstract]   [Full Text] [Related]  

  • 28. The interaction of magnesium ions with the calcium pump of sarcoplasmic reticulum.
    Garrahan PJ; Rega AF; Alonso GL
    Biochim Biophys Acta; 1976 Sep; 448(1):121-32. PubMed ID: 9151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of calcium binding and release by canine cardiac relaxing system (sarcoplasmic reticulum). The use of specific inhibitors to construct a two-component model for calcium binding and transport.
    Entman ML; Snow TR; Freed D; Schwartz A
    J Biol Chem; 1973 Nov; 248(22):7762-72. PubMed ID: 4270770
    [No Abstract]   [Full Text] [Related]  

  • 30. Molecular transformations in sarcoplasmic reticulum of fast-twitch muscle by electro-stimulation.
    Heilmann C; Pette D
    Eur J Biochem; 1979 Feb; 93(3):437-46. PubMed ID: 154404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of ruthenium red on Ca2+ uptake and ATPase of sarcoplasmic reticulum of rabbit skeletal muscle.
    Vale MG; Carvalho AP
    Biochim Biophys Acta; 1973 Oct; 325(1):29-37. PubMed ID: 4272356
    [No Abstract]   [Full Text] [Related]  

  • 32. Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides.
    Meissner G; Darling E; Eveleth J
    Biochemistry; 1986 Jan; 25(1):236-44. PubMed ID: 3754147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH-dependent inhibitory effects of Ca2+, Mg2+, and K+ on Ca2+ efflux mediated by sarcoplasmic reticulum ATPase.
    Wolosker H; de Meis L
    Am J Physiol; 1994 May; 266(5 Pt 1):C1376-81. PubMed ID: 8203500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic characterization of Mg2+-dependent ATPase of sarcoplasmic reticulum.
    Perret ML; Vianna AL
    An Acad Bras Cienc; 1981 Mar; 53(1):173-81. PubMed ID: 6456683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uncoupling of fragmented sarcoplasmic reticulum's calcium uptake and extra ATPase activity found in the absence of oxalate.
    McFarland BH; Chan SI
    Life Sci II; 1973 May; 12(9):385-93. PubMed ID: 4267024
    [No Abstract]   [Full Text] [Related]  

  • 36. High and low affinity Ca2+ binding to the sarcoplasmic reticulum: use of a high-affinity fluorescent calcium indicator.
    Chiu VC; Haynes DH
    Biophys J; 1977 Apr; 18(1):3-22. PubMed ID: 15667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical modification of sarcoplasmic reticulum with methylbenzimidate. Stimulation of Ca2+ efflux.
    Shoshan-Barmatz V
    Biochem J; 1987 Apr; 243(1):165-73. PubMed ID: 2955781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate.
    Winkler F; Suko J
    Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259
    [No Abstract]   [Full Text] [Related]  

  • 39. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate.
    Yoshida H; Tonomura Y
    J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of deuterium ion concentration on the properties of sarcoplasmic reticulum.
    Huxtable R; Bressler R
    J Membr Biol; 1974; 17(2):189-97. PubMed ID: 4276282
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.