These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 561160)
1. A reassessment of decreased amino acid accumulation by Ehrlich ascites tumor cells in the presence of metabolic inhibitors. Schafer JA J Gen Physiol; 1977 Jun; 69(6):681-704. PubMed ID: 561160 [TBL] [Abstract][Full Text] [Related]
2. One-way fluxes of alpha-aminoisobutyric acid in Ehrlich ascites tumor cells. Trans effects and effects of sodium and potassium. Jacquez JA J Gen Physiol; 1975 Jan; 65(1):57-83. PubMed ID: 1167372 [TBL] [Abstract][Full Text] [Related]
3. Amino Acid Transport and stimulation by substrates in the absence of a Na2+ electrochemical potential gradient. Heinz A; Jackson JW; Richey BE; Sachs G; Schafer JA J Membr Biol; 1981; 62(1-2):149-60. PubMed ID: 7277474 [TBL] [Abstract][Full Text] [Related]
4. Effect of H+ on the kinetics of Na+-dependent amino acid transport in Ehrlich ascites tumor cells: evidence for H+ as an alternative substrate. Smith TC; Robinson SC J Cell Physiol; 1981 Dec; 109(3):507-16. PubMed ID: 6274883 [TBL] [Abstract][Full Text] [Related]
5. Energetics of Na+-dependent amino acid co-transport in Ehrlich ascites tumor cells. Dawson WD; Smith TC Biochim Biophys Acta; 1987 Feb; 897(1):5-13. PubMed ID: 3801480 [TBL] [Abstract][Full Text] [Related]
6. Cation flux in the ehrlich ascites tumor cell. Evidence for Na+-for-Na+ and K+-for-K+ exchange diffusion. Tupper JT Biochim Biophys Acta; 1975 Jul; 394(4):586-96. PubMed ID: 233946 [TBL] [Abstract][Full Text] [Related]
7. The involvement of the membrane oxidoreduction system in stimulating amino acid uptake in Ehrlich ascites tumor cells. Yamamoto S; Kawasaki T Biochim Biophys Acta; 1981 Jun; 644(2):192-200. PubMed ID: 7260073 [TBL] [Abstract][Full Text] [Related]
8. The use of HgCl2 to evaluate the cosubstrate: amino acid transport stoichiometry in Ehrlich ascites tumor cells. Dawson WD; Robinson SC; Smith TC J Cell Physiol; 1983 May; 115(2):131-6. PubMed ID: 6221025 [TBL] [Abstract][Full Text] [Related]
9. Na+ and K+ electrochemical potential gradients and the transport of alpha-aminoisobutyric acid in Ehrlich ascites tumor cells. Jacquez JA; Schafer JA Biochim Biophys Acta; 1969; 193(2):368-83. PubMed ID: 5389248 [No Abstract] [Full Text] [Related]
10. The effect of microtubular inhibitors on transport of alpha-aminoisobutyric acid. Inhibition of uphill transport without changes in transmembrane gradients of Na+, K+, or H+. Goldman ID; Fyfe JM; Bowen D; Loftfield S; Schafer JA Biochim Biophys Acta; 1977 Jun; 467(2):185-91. PubMed ID: 18176 [No Abstract] [Full Text] [Related]
11. A reduction in energy-dependent amino acid transport by microtubular inhibitors in Ehrlich ascites tumor cells. Fyfe MJ; Loftfield S; Goldman ID J Cell Physiol; 1975 Oct; 86(2 Pt 1):201-11. PubMed ID: 1194361 [TBL] [Abstract][Full Text] [Related]
12. Energization of amino acid transport in energy-depleted Ehrlich cells and plasma membrane vesicles. Ohsawa M; Kilberg MS; Kimmel G; Christensen HN Biochim Biophys Acta; 1980 Jun; 599(1):175-90. PubMed ID: 7397146 [TBL] [Abstract][Full Text] [Related]
13. K+-induced alterations of energetics and exchange diffusion in the carrier-mediated transport of the folic acid analog, methotrexate, in Ehrlich ascites tumor cells. Fry DW; Cybulski RL; Goldman ID Biochim Biophys Acta; 1980 Dec; 603(1):157-70. PubMed ID: 7192570 [TBL] [Abstract][Full Text] [Related]
14. The effect of reversal on Na + and K + electrochemical potential gradients on the active transport of amino acids in Ehrlich ascites tumor cells. Schafer JA; Heinz E Biochim Biophys Acta; 1971 Oct; 249(1):15-33. PubMed ID: 5141124 [No Abstract] [Full Text] [Related]
15. Alpha-aminoisobutyric acid transport in rat soleus muscle and its modification by membrane stabilizers and insulin. Cooper GJ; Kohn PG J Physiol; 1980 May; 302():89-105. PubMed ID: 6997458 [TBL] [Abstract][Full Text] [Related]
16. Characteristics and energy requirements of an alpha-aminoisobutyric acid transport system in Streptococcus lactis. Thompson J J Bacteriol; 1976 Aug; 127(2):719-30. PubMed ID: 8422 [TBL] [Abstract][Full Text] [Related]
17. Sources of energy for the transport of potassium and sodium across the membrane of the Ehrlich mouse ascites tumor cell. Hempling HG Bibl Laeger; 1966 Mar; 112(3):503-18. PubMed ID: 5912019 [No Abstract] [Full Text] [Related]
18. Modified transport substrates as probes for intramembrane gradients. Christensen HN; De Cespedes C; Handlogten ME; Ronquist G Ann N Y Acad Sci; 1974 Feb; 227():355-79. PubMed ID: 4133305 [No Abstract] [Full Text] [Related]
19. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate. Reid M; Gibb LE; Eddy AA Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255 [TBL] [Abstract][Full Text] [Related]
20. The degree and the efficiency of coupling between the influxes of Na + and -aminoisobutyrate in Ehrlich cells. Geck P; Heinz E; Pfeiffer B Biochim Biophys Acta; 1972 Nov; 288(2):486-91. PubMed ID: 4673358 [No Abstract] [Full Text] [Related] [Next] [New Search]