BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 561615)

  • 1. Surface potential effects on metal ion binding to phosphatidylcholine membranes 31P NMR study of lanthanide and calcium ion binding to egg-yolk lecithin vesicles.
    Grasdalen H; Göran Eriksson LE; Westman J; Ehrenberg A
    Biochim Biophys Acta; 1977 Sep; 469(2):151-62. PubMed ID: 561615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion-binding to phospholipids. Interaction of calcium and lanthanide ions with phosphatidylcholine (lecithin).
    Hauser H; Phillips MC; Levine BA; Williams RJ
    Eur J Biochem; 1975 Oct; 58(1):133-44. PubMed ID: 241630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of various lanthanide ions and some anions with phosphatidylcholine vesicle membranes. A 31P NMR study of the surface potential effects.
    Westman J; Eriksson LE
    Biochim Biophys Acta; 1979 Oct; 557(1):62-78. PubMed ID: 549644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of endogenous calcium ion in horseradish peroxidase. Elucidation of metal-binding site by substitutions of divalent and lanthanide ions for calcium and use of metal-induced NMR (1H and 113Cd) resonances.
    Morishima I; Kurono M; Shiro Y
    J Biol Chem; 1986 Jul; 261(20):9391-9. PubMed ID: 3722203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-resolution NMR study (1H, 13C, 31P) of the interaction of paramagnetic ions with phospholipids in aqueous dispersions.
    Nolden PW; Ackermann T
    Biophys Chem; 1976 May; 4(3):297-304. PubMed ID: 985701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-induced phase separation in phosphatidylserine/phosphatidylcholine membranes.
    Tokutomi S; Ohki K; Ohnishi SI
    Biochim Biophys Acta; 1980 Feb; 596(2):192-200. PubMed ID: 6243978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-induced aggregation and fusion of mixed phosphatidylcholine-phosphatidic acid vesicles as studied by 31P NMR.
    Koter M; de Kruijff B; van Deenen LL
    Biochim Biophys Acta; 1978 Dec; 514(2):255-63. PubMed ID: 737172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of the conformation of the polar head groups of phosphatidylcholine on its packing in bilayers. Nuclear magnetic resonance studies on the effect of the binding of lanthanide ions.
    Lichtenberg D; Amselem S; Tamir I
    Biochemistry; 1979 Sep; 18(19):4169-72. PubMed ID: 486415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation of the lecithin polar group in charged vesicles.
    Hauser H; Phillips MC
    Nature; 1976 Jun; 261(5559):390-4. PubMed ID: 934269
    [No Abstract]   [Full Text] [Related]  

  • 10. NMR studies on phospholipid bilayers. Some factors affecting lipid distribution.
    Berden JA; Barker RW; Radda GK
    Biochim Biophys Acta; 1975 Jan; 375(2):186-208. PubMed ID: 235977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leakage from egg phosphatidylcholine vesicles induced by Ca2+ and alcohols.
    Disalvo EA
    Biochim Biophys Acta; 1987 Nov; 905(1):9-16. PubMed ID: 3676318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorous nuclear magnetic resonance in egg yolk lecithin: field dependent line widths and phosphate group mobility.
    Davis DG
    Biochem Biophys Res Commun; 1972 Dec; 49(6):1492-7. PubMed ID: 4674283
    [No Abstract]   [Full Text] [Related]  

  • 13. The adsorption of divalent cations to phosphatidylcholine bilayer membranes.
    McLaughlin A; Grathwohl C; McLaughlin S
    Biochim Biophys Acta; 1978 Nov; 513(3):338-57. PubMed ID: 718897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface potential of phosphatidylserine monolayers. I. Divalent ion binding effect.
    Ohki S; Sauve R
    Biochim Biophys Acta; 1978 Aug; 511(3):377-87. PubMed ID: 687618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical studies on phosphonium phosphatidylcholine. A unique [31P]phosphorus nuclear-magnetic-resonance probe for model and biological membranes.
    Sim E; Cullis PR; Richards RE
    Biochem J; 1975 Dec; 151(3):555-60. PubMed ID: 1240758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes.
    McLaughlin A; Eng WK; Vaio G; Wilson T; McLaughlin S
    J Membr Biol; 1983; 76(2):183-93. PubMed ID: 6242893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for cooperative effects in the bind of polyvalent metal ions to pure phosphatidylcholine bilayer vesicle surfaces.
    Chrzeszczyk A; Wishnia A; Springer CS
    Biochim Biophys Acta; 1981 Oct; 648(1):28-48. PubMed ID: 6895325
    [No Abstract]   [Full Text] [Related]  

  • 18. Proton magnetic resonance study of cholesterol transfer between egg yolk lecithin vesicles.
    Haran N; Shporer M
    Biochim Biophys Acta; 1977 Feb; 465(1):11-8. PubMed ID: 556952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of polysialic acid on molecular dynamics of model membranes studied by 31P NMR spectroscopy.
    Timoszyk A; Gdaniec Z; Latanowicz L
    Solid State Nucl Magn Reson; 2004 Jan; 25(1-3):142-5. PubMed ID: 14698401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium binding proteins: optical stopped-flow and proton nuclear magnetic resonance studies of the binding of the lanthanide series of metal ions to parvalbumin.
    Corson DC; Williams TC; Sykes BD
    Biochemistry; 1983 Dec; 22(25):5882-9. PubMed ID: 6661415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.