These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 5618033)

  • 1. [Lenticular ribonuclease activity during opacification of the crystalline lens (preliminary note)].
    Maione M; Maraini G; Carta F
    Ann Ottalmol Clin Ocul; 1967 Nov; 93(11):1125-9. PubMed ID: 5618033
    [No Abstract]   [Full Text] [Related]  

  • 2. Further studies on the purification and properties of a ribonuclease inhibitor from lens cortex.
    Ortwerth BJ; Byrnes RJ
    Exp Eye Res; 1972 Sep; 14(2):114-22. PubMed ID: 5070225
    [No Abstract]   [Full Text] [Related]  

  • 3. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts.
    Yan H; Lou MF; Fernando MR; Harding JJ
    Mol Vis; 2006 Oct; 12():1153-9. PubMed ID: 17093401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Total activity and isoenzyme spectrum of lactate dehydrogenase in a normal human crystalline lens and in senile cataract].
    Kasavina BS; Zangieva VD; Drozhzheva VV
    Biull Eksp Biol Med; 1972 May; 73(5):51-4. PubMed ID: 5038310
    [No Abstract]   [Full Text] [Related]  

  • 5. Ribonuclease activity and polysome profile in human senile cataract.
    Maione M; Maraini G; Carta F
    Exp Eye Res; 1968 Oct; 7(4):546-60. PubMed ID: 5716095
    [No Abstract]   [Full Text] [Related]  

  • 6. [Histochemical localization of acetylcholinesterase activity in normal rabbit crystalline lens and in human cataractous crystalline lens].
    Scuderi G; Delle Noci N; Sborgia C; Sborgia G
    Boll Soc Ital Biol Sper; 1974 Feb; 50(4):207-10. PubMed ID: 4447717
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of acetyl-L-carnitine on lenticular calpain activity in prevention of selenite-induced cataractogenesis.
    Elanchezhian R; Sakthivel M; Geraldine P; Thomas PA
    Exp Eye Res; 2009 May; 88(5):938-44. PubMed ID: 19150348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in glutathione, glutathione-linked enzymes and hexose monophosphate shunt enzymes in senile cataract.
    George S; Jyothi M; Mathew B; Shashidhar S
    Indian J Physiol Pharmacol; 2003 Apr; 47(2):191-6. PubMed ID: 15255623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Sorbitol dehydrogenase enzyme activity in the postmortem human crystalline lens and in the cataractous lens].
    Cioli S; Mazzilli G; Nizzola GM; Panagis P
    Ann Ottalmol Clin Ocul; 1969 May; 95(5):440-6. PubMed ID: 5401687
    [No Abstract]   [Full Text] [Related]  

  • 10. Matrix metalloproteinase-9 activity in human lens epithelial cells of cortical, posterior subcapsular, and nuclear cataracts.
    Alapure BV; Praveen MR; Gajjar D; Vasavada AR; Rajkumar S; Johar K
    J Cataract Refract Surg; 2008 Dec; 34(12):2063-7. PubMed ID: 19027560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transglutaminase activity in normal human lenses and in senile cataracts.
    Hidasi V; Muszbek L
    Ann Clin Lab Sci; 1995; 25(3):236-40. PubMed ID: 7605105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lens aldehyde reductase and dehydrogenase, and their possible involvement in diabetes and cataract formation.
    Crabbe MJ; Ting HH; Halder AB
    Prog Clin Biol Res; 1982; 114():329-46. PubMed ID: 6761710
    [No Abstract]   [Full Text] [Related]  

  • 13. [Aspartate aminotransferase of the blood and crystalline lens in naphthalene-induced cataract formation].
    Cherevichnaia EV
    Oftalmol Zh; 1976; 31(7):551-2. PubMed ID: 1012638
    [No Abstract]   [Full Text] [Related]  

  • 14. Enzyme lactic dehydrogenase (LDH).
    Chadha MR; Singh K; Singh B
    Indian J Ophthalmol; 1981 Dec; 29(4):325-9. PubMed ID: 7346452
    [No Abstract]   [Full Text] [Related]  

  • 15. [Metabolism of the lens crystalline and cataract].
    Offret G; Dhermy P
    J Fr Ophtalmol; 1988; 11(4):369-402. PubMed ID: 3049767
    [No Abstract]   [Full Text] [Related]  

  • 16. Revival of glutathione reductase in human cataractous and clear lens extracts by thioredoxin and thioredoxin reductase, in conjunction with alpha-crystallin or thioltransferase.
    Yan H; Harding JJ; Xing K; Lou MF
    Curr Eye Res; 2007 May; 32(5):455-63. PubMed ID: 17514531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GSSG-reducing activity in lenses deficient in glucose-6-phosphate dehydrogenase.
    Cheng HM; Chylack LT; Sang CN; Orzalesi N; Corongiu FP
    Metab Pediatr Syst Ophthalmol; 1983; 7(1):53-7. PubMed ID: 6621360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression, regulation and function of Na,K-ATPase in the lens.
    Delamere NA; Tamiya S
    Prog Retin Eye Res; 2004 Nov; 23(6):593-615. PubMed ID: 15388076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Proteolytic activity and oxidation-reduction system of the lens in experimental cataract].
    Bernat R; Bombicki K
    Acta Physiol Pol; 1968; 19(6):927-34. PubMed ID: 5708979
    [No Abstract]   [Full Text] [Related]  

  • 20. [Activity of the enzymes of glycolysis and Krebs cycle in various sections of human cataract lenses].
    Friedburg D; Moog P
    Ber Zusammenkunft Dtsch Ophthalmol Ges; 1968; 68():126-30. PubMed ID: 5756759
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.